$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GraphQLでの型渡しとデータフェッチの最適化
Search
林憲吾
September 19, 2024
Technology
1
550
GraphQLでの型渡しとデータフェッチの最適化
「テックリードの悩みを解決するGraphQLの話」にて登壇した資料です。
https://estie.connpass.com/event/328999/
林憲吾
September 19, 2024
Tweet
Share
More Decks by 林憲吾
See All by 林憲吾
GraphQLを安全に使うためにやっていること
hayashikengo
2
840
電子署名サービスの品質戦略
hayashikengo
1
960
CTOの役割と、カルチャーの醸成
hayashikengo
1
92
Other Decks in Technology
See All in Technology
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
390
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
210
AI時代の新規LLMプロダクト開発: Findy Insightsを3ヶ月で立ち上げた舞台裏と振り返り
dakuon
0
210
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
130
AI駆動開発の実践とその未来
eltociear
1
210
Fashion×AI「似合う」を届けるためのWEARのAI戦略
zozotech
PRO
2
850
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
2
160
S3を正しく理解するための内部構造の読解
nrinetcom
PRO
2
160
ActiveJobUpdates
igaiga
1
140
生成AIを利用するだけでなく、投資できる組織へ / Becoming an Organization That Invests in GenAI
kaminashi
0
110
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
380
RAG/Agent開発のアップデートまとめ
taka0709
0
190
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Embracing the Ebb and Flow
colly
88
4.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
The Pragmatic Product Professional
lauravandoore
37
7.1k
RailsConf 2023
tenderlove
30
1.3k
The Invisible Side of Design
smashingmag
302
51k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Writing Fast Ruby
sferik
630
62k
Making Projects Easy
brettharned
120
6.5k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Transcript
GraphQLでの型渡しとデータフェッチの最適化 株式会社PICK 林憲吾 Hayashi Kengo
https://twitter.com/kenbu05 株式会社PICK CTO 林憲吾 Hayashi Kengo 自己紹介 ①経歴 ②趣味 学生時代
スペースマーケット (インターン ) 2018-2019 ヤフー 2019-2022 スリーシェイク 2022-現在 PICK CTO 筋トレ・バイク・釣り
はじめに GraphQLでの型渡しとデータフェッチの最適化 01. AtomicDesign と colocationの相性 02. 03. 目次 まとめ
04.
01. はじめに
PICKはどんなプロダクトを作っているのか? 01. はじめに 電子契約 案件管理 顧客管理 and more…
PICKの技術スタック 01. はじめに
GraphQLを効率的に扱う為にしたこと 01. はじめに データフェッチ最適化 → colocationの概念取り入れた コンポーネントでの Propsの扱いを楽に → fragmentとgraphql-codegenを取り入れた
02. GraphQLでの型渡しとデータフェッチの最適化
colocationとは? 02. GraphQLでの型渡しとデータフェッチの最適化 データの取得ロジックと、そのデータを使う UIコンポーネントを 同じ場所にまとめて管理するという考え方。
なぜ取り入れたか? 02. GraphQLでの型渡しとデータフェッチの最適化 - コンポーネント内にデータ取得ロジックが集約 → 開発効率とメンテナンス性の向上 → データフェッチの最適化
colocation具体例(ヘッダーの場合) 02. GraphQLでの型渡しとデータフェッチの最適化
コンポーネントのデータ定義が共通化できる 02. GraphQLでの型渡しとデータフェッチの最適化
共通化される場合の GraphQLの定義 02. GraphQLでの型渡しとデータフェッチの最適化
graqhpl-codegenとは? 02. GraphQLでの型渡しとデータフェッチの最適化 GraphQLスキーマやクエリをもとに、 型安全なコードを自動生成するライブラリ
graqhpl-codegenをなぜ取り入れたか? 02. GraphQLでの型渡しとデータフェッチの最適化 - フロントエンド側で、 GraphQLを型安全に扱う為。 → GraphQLのメリットを最大限享受 → Fragmentの型生成が
colocation と相性良かった
graphql-codegen実装例①( hooks編) 02. GraphQLでの型渡しとデータフェッチの最適化
graphql-codegen実装例②( fragment編) 02. GraphQLでの型渡しとデータフェッチの最適化
まとめ 02. GraphQLでの型渡しとデータフェッチの最適化 - colocation・graphql-codegen 導入すると → データに依存した Component Propsの型生成を自動化
→ 保守性・開発効率上がる → Queryの使いまわしが減り、データフェッチの最適化
03. AtomicDesign と colocation の相性
AtomicDesignにおけるcolocation相性 03. GraphQLでのデータフェッチ最適化 - 必ずしも相性が良いとは限らない、、、 - データの再利用性 vs UIの再利用性の衝突 -
各階層にFragmentが絡むことでのデータ階層の複雑性の増加 - 依存関係の複雑化
AtomicDesignにおけるcolocationの落とし所 03. GraphQLでのデータフェッチ最適化 - Fragmentルール化 - 上位コンポーネントに集約 - 必要な場合にのみ Colocationを使う
- Prop Drillingを活用する
04. まとめ
まとめ 04. - colocation と graphql-codegen を導入すると、 GraphQLの メリットを享受できる -
AtomicDesign と colocation は必ずしも相性が良い訳ではなく、 導入時には要検討
最後に 04. - Twitter/Zennやってます!ご興味あれば見てみてください! - https://x.com/kenbu05 - https://zenn.dev/kenghaya -
ご清聴ありがとうございました
None