Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GraphQLでの型渡しとデータフェッチの最適化
Search
林憲吾
September 19, 2024
Technology
1
520
GraphQLでの型渡しとデータフェッチの最適化
「テックリードの悩みを解決するGraphQLの話」にて登壇した資料です。
https://estie.connpass.com/event/328999/
林憲吾
September 19, 2024
Tweet
Share
More Decks by 林憲吾
See All by 林憲吾
GraphQLを安全に使うためにやっていること
hayashikengo
2
790
電子署名サービスの品質戦略
hayashikengo
1
920
CTOの役割と、カルチャーの醸成
hayashikengo
1
89
Other Decks in Technology
See All in Technology
生成AIとM5Stack / M5 Japan Tour 2025 Autumn 東京
you
PRO
0
220
社内お問い合わせBotの仕組みと学び
nish01
0
440
M5製品で作るポン置きセルラー対応カメラ
sayacom
0
160
自作LLM Native GORM Pluginで実現する AI Agentバックテスト基盤構築
po3rin
2
270
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
3
390
about #74462 go/token#FileSet
tomtwinkle
1
410
定期的な価値提供だけじゃない、スクラムが導くチームの共創化 / 20251004 Naoki Takahashi
shift_evolve
PRO
3
330
後進育成のしくじり〜任せるスキルとリーダーシップの両立〜
matsu0228
7
2.7k
社内報はAIにやらせよう / Let AI handle the company newsletter
saka2jp
5
610
KMP の Swift export
kokihirokawa
0
340
PLaMoの事後学習を支える技術 / PFN LLMセミナー
pfn
PRO
9
3.9k
多野優介
tanoyusuke
1
460
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Code Review Best Practice
trishagee
72
19k
Designing for Performance
lara
610
69k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Practical Orchestrator
shlominoach
190
11k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
How to train your dragon (web standard)
notwaldorf
96
6.3k
Fireside Chat
paigeccino
40
3.7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Transcript
GraphQLでの型渡しとデータフェッチの最適化 株式会社PICK 林憲吾 Hayashi Kengo
https://twitter.com/kenbu05 株式会社PICK CTO 林憲吾 Hayashi Kengo 自己紹介 ①経歴 ②趣味 学生時代
スペースマーケット (インターン ) 2018-2019 ヤフー 2019-2022 スリーシェイク 2022-現在 PICK CTO 筋トレ・バイク・釣り
はじめに GraphQLでの型渡しとデータフェッチの最適化 01. AtomicDesign と colocationの相性 02. 03. 目次 まとめ
04.
01. はじめに
PICKはどんなプロダクトを作っているのか? 01. はじめに 電子契約 案件管理 顧客管理 and more…
PICKの技術スタック 01. はじめに
GraphQLを効率的に扱う為にしたこと 01. はじめに データフェッチ最適化 → colocationの概念取り入れた コンポーネントでの Propsの扱いを楽に → fragmentとgraphql-codegenを取り入れた
02. GraphQLでの型渡しとデータフェッチの最適化
colocationとは? 02. GraphQLでの型渡しとデータフェッチの最適化 データの取得ロジックと、そのデータを使う UIコンポーネントを 同じ場所にまとめて管理するという考え方。
なぜ取り入れたか? 02. GraphQLでの型渡しとデータフェッチの最適化 - コンポーネント内にデータ取得ロジックが集約 → 開発効率とメンテナンス性の向上 → データフェッチの最適化
colocation具体例(ヘッダーの場合) 02. GraphQLでの型渡しとデータフェッチの最適化
コンポーネントのデータ定義が共通化できる 02. GraphQLでの型渡しとデータフェッチの最適化
共通化される場合の GraphQLの定義 02. GraphQLでの型渡しとデータフェッチの最適化
graqhpl-codegenとは? 02. GraphQLでの型渡しとデータフェッチの最適化 GraphQLスキーマやクエリをもとに、 型安全なコードを自動生成するライブラリ
graqhpl-codegenをなぜ取り入れたか? 02. GraphQLでの型渡しとデータフェッチの最適化 - フロントエンド側で、 GraphQLを型安全に扱う為。 → GraphQLのメリットを最大限享受 → Fragmentの型生成が
colocation と相性良かった
graphql-codegen実装例①( hooks編) 02. GraphQLでの型渡しとデータフェッチの最適化
graphql-codegen実装例②( fragment編) 02. GraphQLでの型渡しとデータフェッチの最適化
まとめ 02. GraphQLでの型渡しとデータフェッチの最適化 - colocation・graphql-codegen 導入すると → データに依存した Component Propsの型生成を自動化
→ 保守性・開発効率上がる → Queryの使いまわしが減り、データフェッチの最適化
03. AtomicDesign と colocation の相性
AtomicDesignにおけるcolocation相性 03. GraphQLでのデータフェッチ最適化 - 必ずしも相性が良いとは限らない、、、 - データの再利用性 vs UIの再利用性の衝突 -
各階層にFragmentが絡むことでのデータ階層の複雑性の増加 - 依存関係の複雑化
AtomicDesignにおけるcolocationの落とし所 03. GraphQLでのデータフェッチ最適化 - Fragmentルール化 - 上位コンポーネントに集約 - 必要な場合にのみ Colocationを使う
- Prop Drillingを活用する
04. まとめ
まとめ 04. - colocation と graphql-codegen を導入すると、 GraphQLの メリットを享受できる -
AtomicDesign と colocation は必ずしも相性が良い訳ではなく、 導入時には要検討
最後に 04. - Twitter/Zennやってます!ご興味あれば見てみてください! - https://x.com/kenbu05 - https://zenn.dev/kenghaya -
ご清聴ありがとうございました
None