Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データウェアハウスを使ってみよう
Search
みかん大学
June 01, 2024
Technology
0
55
データウェアハウスを使ってみよう
- データウェアハウスを使ってみよう
- BigQuery の使用例
みかん大学
June 01, 2024
Tweet
Share
More Decks by みかん大学
See All by みかん大学
VRChatのワールド情報が大量に集まっていた
hidetobara
0
130
VRChat と cluster ワールドの違い-その1-
hidetobara
0
320
VRChat 続・日本語圏のワールドの特徴
hidetobara
0
140
VRChat日本語圏のワールドの特徴
hidetobara
0
200
VRChat Lab抜けの条件
hidetobara
0
1.9k
アンドロイドは電気羊の絵を描くか?
hidetobara
2
59
Other Decks in Technology
See All in Technology
複数サービスを支えるマルチテナント型Batch MLプラットフォーム
lycorptech_jp
PRO
1
820
「Linux」という言葉が指すもの
sat
PRO
4
140
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
420
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
280
自作JSエンジンに推しプロポーザルを実装したい!
sajikix
1
190
TS-S205_昨年対比2倍以上の機能追加を実現するデータ基盤プロジェクトでのAI活用について
kaz3284
1
210
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
320
Django's GeneratedField by example - DjangoCon US 2025
pauloxnet
0
150
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
580
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
2
450
RSCの時代にReactとフレームワークの境界を探る
uhyo
10
3.5k
Featured
See All Featured
Speed Design
sergeychernyshev
32
1.1k
Context Engineering - Making Every Token Count
addyosmani
3
58
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
850
The Invisible Side of Design
smashingmag
301
51k
Typedesign – Prime Four
hannesfritz
42
2.8k
The Cult of Friendly URLs
andyhume
79
6.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Automating Front-end Workflow
addyosmani
1370
200k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Practical Orchestrator
shlominoach
190
11k
Writing Fast Ruby
sferik
628
62k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Transcript
データウェアハウスを 使ってみよう みかん電機
DWH (Data Warehouse)とは • 「データの倉庫」を意味する言葉 • 大量のデータを管理し、分析計算を高速に行うシステム • 例 ◦
Apache Hadoop, Spark, Hive ◦ AWS Athena, Redshift ◦ GCP BigQuery ◦ Azure SQL Data Warehouse ◦ Snowflake ◦ Databricks etc…
RDB (Relational Database) とは何が違うの? • 方言の違いはあるものの SQL でクエリを記述できるのは共通 • RDB
は行指向データベース、DWH は列指向データベース • DWH はデータ量がテラ、ペタ級になっても実用的に動作 • RDB はレコードの更新も速い、DWH だと更新は遅いもしくは不可 • RDB を使うのはWebアプリケーションなどのシステム、DWH を使うのは分析基盤 などのシステム user_id ・・・ 名前 年齢 1234 山田 21 1235 田中 30 1236 伊藤 60 行指向 列指向
Datalake とは何が違うの? • Datalake は生ログが置いてあり、DWH はそれらを整形して入れたものだったはず が・・・ ◦ AWS S3,
Athena は Datalake で、AWS Redshift が DWH • BigQuery は、改善によって、JSON形式の生ログを入れても大丈夫になっていた ・・・ ◦ 境界はあいまいな気が ◦ 本によっても言葉がぶれており
例)ECサイトの中での立ち位置 • Web Framework に Laravel • RDB に、AWS RDS
• Datalake として、AWS S3 / Athena • DWH に、AWS Redshift DWH RDB WEB サーバ Datalake ユーザデータ 生ログ • 購買ログ • ページ遷移
わざわざ分けるの面倒だし RDB でも良くないんですか? 「購買ログ・テーブルも、RDBに入れますね」 「カラムは、購買日時、ユーザID、商品ID でいいか」 「えっ、どこの県の人が買っているか調べたい?」 「ユーザ情報と JOIN して検索すると今の県しか分からないって?」
「購買ログ・テーブルのカラムにその時点での住所情報も追加しますね」 「え、年齢も年収も所帯も子供数もさらに必要って?」 「大変です、CMの影響でユーザ数が増大しています」 「RDBの容量の9割以上が購買ログなのですが!」 ・・・・・( ゚Д゚)
RDB
大量のデータを集めて分析するために作られたのが DWH 課題 • 分析用ログは正規化できないのでデータ量は膨大に • 分析対象となる膨大なデータは、RDB の検索性を圧迫しコストも増大 解決策 •
DWH を使おう! • BigQuery は、DWH の中でスタートアップや個人でも使いやすい ◦ 1ヶ月1Gのデータ保存で約3円、長期になると1.5円 ◦ スキャンしたデータ量だけ課金される、いわゆるサーバーレスの課金方式 ▪ 他のサービスのように最低でも月に〇万円かかる、ということは無い ▪ 1Gのスキャンで約0.937円 ◦ 初期の契約でも、GCP上の計算リソースが空いているならば最大 2000並列で計算してくれるので、 めっちゃ速い
まとめ • DWHは、大量のデータを管理することができます • そのデータの分析を高速に行うことができます • 餅は餅屋 • SQL でデータの操作はできるので実例は略
• DWH おススメの本→ • おまけ ◦ VRChat のワールドデータ公開します
おまけ)VRChat ワールドデータ (Parquet) • VRC API にて、ワールドの更新があるとその一覧が取得できるので、そこからデー タ取得 • ワールド名や作者名、訪問数、お気に入り数、説明文、タグなどがあります
おまけ)BigQuery で、月毎のワールド公開数を調べる • クエリを実行する前に、スキャンするデー タ量が表示され、計算コストが分かるので うれしい↑ • WITH 構文が使えるので、サブクエリのネ ストしなくても良い
• 最大2000並列で計算するので速い • クエリ結果は見やすいとは言えないので、 スプレッドシートや JupyterLab などにエク スポート