Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Aurora DSQL と楽観的同時実行制御(OCC)
Search
hmatsu47
PRO
December 25, 2024
Technology
0
75
Aurora DSQL と楽観的同時実行制御(OCC)
AWS re:Invent 2024 re:Cap 名古屋 2024/12/26
hmatsu47
PRO
December 25, 2024
Tweet
Share
More Decks by hmatsu47
See All by hmatsu47
ゲームで体感!Aurora DSQL の OCC(楽観的同時実行制御)
hmatsu47
PRO
0
9
PostgreSQL+pgvector で GraphRAG に挑戦 & pgvectorscale 0.7.x アップデート
hmatsu47
PRO
0
17
LlamaIndex の Property Graph Index を PostgreSQL 上に構築してデータ構造を見てみる
hmatsu47
PRO
0
14
PostgreSQL+pgvector で LlamaIndex の Property Graph Index を試す(序章)
hmatsu47
PRO
0
12
HeatWave on AWS という選択肢を検討してみる
hmatsu47
PRO
0
9
HeatWave on AWS のインバウンドレプリケーションで HeatWave エンジン有効時のレプリケーションラグを確認してみた!
hmatsu47
PRO
0
17
CloudWatch Database Insights 関連アップデート
hmatsu47
PRO
0
37
さいきんの MySQL との付き合い方 〜 MySQL 8.0 より後の世界へようこそ 〜
hmatsu47
PRO
0
32
ベクトルストア入門
hmatsu47
PRO
0
26
Other Decks in Technology
See All in Technology
MCPと認可まわりの話 / mcp_and_authorization
convto
1
140
「AI駆動開発」のボトルネック『言語化』を効率化するには
taniiicom
1
110
2025-07-25 NOT A HOTEL TECH TALK ━ スマートホーム開発の最前線 ━ SOFTWARE
wakinchan
0
130
M365アカウント侵害時の初動対応
lhazy
7
4.5k
SAE J1939シミュレーション環境構築
daikiokazaki
0
150
2025/07/22_家族アルバム みてねのCRE における生成AI活用事例
masartz
2
110
手動からの解放!!Strands Agents で実現する総合テスト自動化
ideaws
2
300
claude codeでPrompt Engineering
iori0311
0
440
AI工学特論: MLOps・継続的評価
asei
10
1.6k
Data Engineering Study#30 LT資料
tetsuroito
1
560
株式会社島津製作所_研究開発(集団協業と知的生産)の現場を支える、OSS知識基盤システムの導入
akahane92
1
1.2k
AIコードアシスタントとiOS開発
jollyjoester
1
230
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
How STYLIGHT went responsive
nonsquared
100
5.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
KATA
mclloyd
30
14k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
370
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Faster Mobile Websites
deanohume
308
31k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1k
Transcript
Aurora DSQL と楽観的同時実行制御(OCC) AWS re:Invent 2024 re:Cap 名古屋 2024/12/26 まつひさ(hmatsu47)
自己紹介 松久裕保(@hmatsu47) • https://qiita.com/hmatsu47 • 名古屋で Web インフラのお守り係をしています • 普段は
JAWS-UG 名古屋(・浜松)で DB ネタを中心 に話しています(主に RDS / Aurora・たまに DynamoDB) • 全国各地の JAWS(& AWSJ)イベントを巡っています ◦ DAYS(東京)→佐賀→金沢(福井開催)→山形→ Summit →ミート(豊橋)→ 岩手(滝沢)→青森(弘前) 2
12/4 に Aurora DSQL(プレビュー)発表 • シングルリージョン/マルチリージョン大規模分散 DB ◦ リレーショナルモデルと SQL
が使用可能 ▪ いわゆる NewSQL の一種 ◦ ワークロードに合わせて自動でスケール(UP / DOWN) ◦ PostgreSQL ワイヤープロトコル互換 ▪ 対応 SQL 文は PostgreSQL のサブセット ◦ アクティブ/アクティブ構成 ▪ マルチ Writer でシャーディングを使わないアーキテクチャ 3
[1] シングルリージョン構成(可用性 99.99%) 4 引用元 : https://aws.amazon.com/jp/blogs/news/introducing-amazon-aurora-dsql/ Transaction log layer
がある
[2] マルチリージョン構成(可用性 99.999%) 5 引用元 : https://aws.amazon.com/jp/blogs/news/introducing-amazon-aurora-dsql/ Witness Region がある
(リージョンクラスター間調停・ 障害リージョンのデータ修復)
Aurora PostgreSQL Limitless Database では? 6 引用元 : https://aws.amazon.com/jp/blogs/news/amazon-aurora-postgresql-limitless-database-is-now-generally-available/ 前段のルーター層でコマンド/
クエリをシャードに振り分ける 各シャードでデータを分割管理 する (テーブルの種類によってデータの 配置は異なる) Limitless Database はシャーディング によってデータと負荷を分散するので テーブル設計が難しい
シャーディングを使わずにスケールするには? • 楽観的同時実行制御(OCC)を採用 ◦ 一般の RDBMS は悲観的同時実行制御(PCC)を採用 ▪ ロック機構を使う ◦
OCC ではロックを使わない ▪ コミット時に他のトランザクションとの更新競合を検知したらアボート ▪ アボート後必要に応じてリトライ処理(アプリケーション側で実装) ◦ ロックしないので他のトランザクションを待たせることがない ▪ ただし更新競合が頻発するとアプリケーションの性能が下がる欠点がある 7
トランザクション A トランザクション B テーブル X の id = 1
の行 (コミット済み) 開始(BEGIN) 10(初期値) 開始(BEGIN) テーブル X の id = 1 の値を +1 →id = 1 の行ロック獲得成功 (11) (別の処理を実行) テーブル X の id = 1 の値を +1 →id = 1 の行ロック獲得待ち コミット(COMMIT)→成功 (↑行ロック獲得待ち) 11 id = 1 の行ロック獲得成功 (12) (別の処理を実行) コミット(COMMIT)→成功 12 例 [1] 通常の RDBMS(PCC / READ COMMITTED) 8
トランザクション A トランザクション B テーブル X の id = 1
の行 (コミット済み) 開始(BEGIN) 10(初期値) 開始(BEGIN) テーブル X の id = 1 の値を +1 →id = 1 の行 : 11 (別の処理を実行) テーブル X の id = 1 の値を +1 →id = 1 の行 : 11 コミット(COMMIT)→成功 (別の処理を実行) 11 コミット(COMMIT) →失敗・アボート 例 [2] Aurora DSQL(OCC / SNAPSHOT ISOLATION) 9 必要ならリトライする
OCC は PCC と比べて本当に効率が良いのか? • そもそも更新競合が少ないケースで使うもの ◦ 更新競合が多い処理→別データストアを選択して実装したほうが 良い •
分散 DB ではネットワークの遅延が大きく影響 ◦ 都度ロックする場合、地理的に離れたノード・クラスターにも ロックの伝達が必要 →トランザクションコミット時にまとめて確認したほうが効率が良い 10
OCC の注意点 • 長いトランザクションには向かない ◦ あくまでも更新競合が少ないトランザクション向け ▪ トランザクションが長くなるほど更新競合が発生しやすくなる • リトライはアプリケーションで実装する必要がある
• コミット成功の順序が保証されない ◦ トランザクション A → B → C で B が競合してリトライすると、 コミット成功の順序が A → C → B(リトライ)になることも 11
まとめ • Aurora DSQL は SQL が使える大規模分散 DB ◦ シングルリージョンでもマルチリージョンでも使える
◦ OCC の採用によりシャーディングなしにスケールが可能に • 通常の RDBMS とはトランザクションの流れが異なる ◦ 更新が競合したらアボート ◦ 必要ならアプリケーション側でリトライ処理を実装する 12
宣伝 : PHP カンファレンス名古屋 2025 開催! • PHP 以外の話も(少し)あります!(私は MySQL
の話を…) ◦ https://phpcon.nagoya/2025/ 13