Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Aurora DSQL と楽観的同時実行制御(OCC)
Search
hmatsu47
PRO
December 25, 2024
Technology
0
79
Aurora DSQL と楽観的同時実行制御(OCC)
AWS re:Invent 2024 re:Cap 名古屋 2024/12/26
hmatsu47
PRO
December 25, 2024
Tweet
Share
More Decks by hmatsu47
See All by hmatsu47
いろんなところに居る Amazon Q(Developer)を使い分けてみた
hmatsu47
PRO
0
13
ゲームで体感!Aurora DSQL の OCC(楽観的同時実行制御)
hmatsu47
PRO
0
10
PostgreSQL+pgvector で GraphRAG に挑戦 & pgvectorscale 0.7.x アップデート
hmatsu47
PRO
0
26
LlamaIndex の Property Graph Index を PostgreSQL 上に構築してデータ構造を見てみる
hmatsu47
PRO
0
17
PostgreSQL+pgvector で LlamaIndex の Property Graph Index を試す(序章)
hmatsu47
PRO
0
15
HeatWave on AWS という選択肢を検討してみる
hmatsu47
PRO
0
11
HeatWave on AWS のインバウンドレプリケーションで HeatWave エンジン有効時のレプリケーションラグを確認してみた!
hmatsu47
PRO
0
20
CloudWatch Database Insights 関連アップデート
hmatsu47
PRO
0
49
さいきんの MySQL との付き合い方 〜 MySQL 8.0 より後の世界へようこそ 〜
hmatsu47
PRO
0
36
Other Decks in Technology
See All in Technology
GCASアップデート(202506-202508)
techniczna
0
210
ウォンテッドリーのアラート設計と Datadog 移行での知見
donkomura
0
160
o11yツールを乗り換えた話
tak0x00
2
1.7k
なごミュ@SPAJAM2025 第二回予選
1901drama
0
110
Amazon Q と『音楽』-ゲーム音楽もAmazonQで作成してみた感想-
senseofunity129
0
170
形式手法特論:位相空間としての並行プログラミング #kernelvm / Kernel VM Study Tokyo 18th
ytaka23
3
1.5k
Jamf Connect ZTNAとMDMで実現! 金融ベンチャーにおける「デバイストラスト」実例と軌跡 / Kyash Device Trust
rela1470
1
210
生成AI利用プログラミング:誰でもプログラムが書けると 世の中どうなる?/opencampus202508
okana2ki
0
150
Infrastructure as Prompt実装記 〜Bedrock AgentCoreで作る自然言語インフラエージェント〜
yusukeshimizu
1
160
九州の人に知ってもらいたいGISスポット / gis spot in kyushu 2025
sakaik
0
200
僕たちが「開発しやすさ」を求め 模索し続けたアーキテクチャ #アーキテクチャ勉強会_findy
bengo4com
0
2.6k
【OptimizationNight】数理最適化のラストワンマイルとしてのUIUX
brainpadpr
2
550
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
140
7.1k
Adopting Sorbet at Scale
ufuk
77
9.5k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Designing for humans not robots
tammielis
253
25k
Site-Speed That Sticks
csswizardry
10
770
It's Worth the Effort
3n
186
28k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Speed Design
sergeychernyshev
32
1.1k
Transcript
Aurora DSQL と楽観的同時実行制御(OCC) AWS re:Invent 2024 re:Cap 名古屋 2024/12/26 まつひさ(hmatsu47)
自己紹介 松久裕保(@hmatsu47) • https://qiita.com/hmatsu47 • 名古屋で Web インフラのお守り係をしています • 普段は
JAWS-UG 名古屋(・浜松)で DB ネタを中心 に話しています(主に RDS / Aurora・たまに DynamoDB) • 全国各地の JAWS(& AWSJ)イベントを巡っています ◦ DAYS(東京)→佐賀→金沢(福井開催)→山形→ Summit →ミート(豊橋)→ 岩手(滝沢)→青森(弘前) 2
12/4 に Aurora DSQL(プレビュー)発表 • シングルリージョン/マルチリージョン大規模分散 DB ◦ リレーショナルモデルと SQL
が使用可能 ▪ いわゆる NewSQL の一種 ◦ ワークロードに合わせて自動でスケール(UP / DOWN) ◦ PostgreSQL ワイヤープロトコル互換 ▪ 対応 SQL 文は PostgreSQL のサブセット ◦ アクティブ/アクティブ構成 ▪ マルチ Writer でシャーディングを使わないアーキテクチャ 3
[1] シングルリージョン構成(可用性 99.99%) 4 引用元 : https://aws.amazon.com/jp/blogs/news/introducing-amazon-aurora-dsql/ Transaction log layer
がある
[2] マルチリージョン構成(可用性 99.999%) 5 引用元 : https://aws.amazon.com/jp/blogs/news/introducing-amazon-aurora-dsql/ Witness Region がある
(リージョンクラスター間調停・ 障害リージョンのデータ修復)
Aurora PostgreSQL Limitless Database では? 6 引用元 : https://aws.amazon.com/jp/blogs/news/amazon-aurora-postgresql-limitless-database-is-now-generally-available/ 前段のルーター層でコマンド/
クエリをシャードに振り分ける 各シャードでデータを分割管理 する (テーブルの種類によってデータの 配置は異なる) Limitless Database はシャーディング によってデータと負荷を分散するので テーブル設計が難しい
シャーディングを使わずにスケールするには? • 楽観的同時実行制御(OCC)を採用 ◦ 一般の RDBMS は悲観的同時実行制御(PCC)を採用 ▪ ロック機構を使う ◦
OCC ではロックを使わない ▪ コミット時に他のトランザクションとの更新競合を検知したらアボート ▪ アボート後必要に応じてリトライ処理(アプリケーション側で実装) ◦ ロックしないので他のトランザクションを待たせることがない ▪ ただし更新競合が頻発するとアプリケーションの性能が下がる欠点がある 7
トランザクション A トランザクション B テーブル X の id = 1
の行 (コミット済み) 開始(BEGIN) 10(初期値) 開始(BEGIN) テーブル X の id = 1 の値を +1 →id = 1 の行ロック獲得成功 (11) (別の処理を実行) テーブル X の id = 1 の値を +1 →id = 1 の行ロック獲得待ち コミット(COMMIT)→成功 (↑行ロック獲得待ち) 11 id = 1 の行ロック獲得成功 (12) (別の処理を実行) コミット(COMMIT)→成功 12 例 [1] 通常の RDBMS(PCC / READ COMMITTED) 8
トランザクション A トランザクション B テーブル X の id = 1
の行 (コミット済み) 開始(BEGIN) 10(初期値) 開始(BEGIN) テーブル X の id = 1 の値を +1 →id = 1 の行 : 11 (別の処理を実行) テーブル X の id = 1 の値を +1 →id = 1 の行 : 11 コミット(COMMIT)→成功 (別の処理を実行) 11 コミット(COMMIT) →失敗・アボート 例 [2] Aurora DSQL(OCC / SNAPSHOT ISOLATION) 9 必要ならリトライする
OCC は PCC と比べて本当に効率が良いのか? • そもそも更新競合が少ないケースで使うもの ◦ 更新競合が多い処理→別データストアを選択して実装したほうが 良い •
分散 DB ではネットワークの遅延が大きく影響 ◦ 都度ロックする場合、地理的に離れたノード・クラスターにも ロックの伝達が必要 →トランザクションコミット時にまとめて確認したほうが効率が良い 10
OCC の注意点 • 長いトランザクションには向かない ◦ あくまでも更新競合が少ないトランザクション向け ▪ トランザクションが長くなるほど更新競合が発生しやすくなる • リトライはアプリケーションで実装する必要がある
• コミット成功の順序が保証されない ◦ トランザクション A → B → C で B が競合してリトライすると、 コミット成功の順序が A → C → B(リトライ)になることも 11
まとめ • Aurora DSQL は SQL が使える大規模分散 DB ◦ シングルリージョンでもマルチリージョンでも使える
◦ OCC の採用によりシャーディングなしにスケールが可能に • 通常の RDBMS とはトランザクションの流れが異なる ◦ 更新が競合したらアボート ◦ 必要ならアプリケーション側でリトライ処理を実装する 12
宣伝 : PHP カンファレンス名古屋 2025 開催! • PHP 以外の話も(少し)あります!(私は MySQL
の話を…) ◦ https://phpcon.nagoya/2025/ 13