Upgrade to Pro — share decks privately, control downloads, hide ads and more …

SageMakerDataWranglerでノンコードデータ前処理を試してみた

 SageMakerDataWranglerでノンコードデータ前処理を試してみた

JAWS-UG名古屋202105登壇資料
https://jawsug-nagoya.doorkeeper.jp/events/121870

holywater044

May 31, 2021
Tweet

More Decks by holywater044

Other Decks in Technology

Transcript

  1. 自己紹介 名前: Akihiro Horikawa 所属: 総合エネルギー会社の技術研究所 仕事: 社内のデータ分析(主にアセスメントとマネージメント) 資格: ・JDLA

    G検定 2018#2 ・データ分析実務スキル検定 PM級 コミュニティ:・機械学習名古屋 ・JAWS-UG名古屋 ・中部Tableauユーザ会 ・DataRobotコミュニティ 趣味: 子供、データサイエンス、ゲーム、漫画 2
  2. はじめに 3 ⚫ SageMakerStudioに搭載されている、ノンコードデー タ前処理ツール?『SageMaker DataWrangler』 の操作デモになります ⚫ 本LTは、2021年5月31日時点の情報に基づきます ⚫

    本LTの内容にAWS公式と相異があった場合、AWS 公式を正とさせていただきます ⚫ 本LTは登壇者個人の見解であり、誤りが含まれる可 能性があります
  3. 前処理が8割 ⚫ 『データ民主化』の流れで、ノンコード・GUIベースの データ前処理ツールも、存在感を増してる印象 ➢ Tableau PrepBuilder ➢ Alteryx ➢

    DataRobot Prep(旧Paxata) etc ⚫ 学習コストの低さ、作業効率、可読性などにメリット ⚫ でも上記はそれなりのお値段するので、気軽に使える ツールないかなあと思っていた 6
  4. 試す内容 11 ⚫ 普段使っているTableauPrepの基本機能を参考に 作ったお題リスト # 内容 TableauPrepの機能 1 読込み(S3のcsv)、型変更

    読込み 2 サンプル、統計量、分布の確認 クリーニング 3 ユニオン ユニオン 4 ジョイン ジョイン 5 不要項目の削除 クリーニング 6 加工項目の追加 クリーニング 7 絞込み(フィルタ) クリーニング 8 集計 集計 9 ピボット ピボット 10 出力(S3のcsv) 出力
  5. 試す内容 12 ⚫ データ項目、ER ⚫ 前処理の概要 【売上データ : transaction_1, transaction_2】

    tansaction_id item_id quantity date delete pivot1 pivot2 item_id item_name item_price 【商品マスタ : master】 1 1..n +ユニオン transaction_2 2000レコード ← master transaction_1 3000レコード ジョイン 項目削除 delete 項目追加 item_price*quantity 絞込み item_name 集計 date(月次) ピボット pivot1,2 transaction_all
  6. まとめ 17 ⚫ お題を試した結果 ただ、このお題は、SMDataWrnglerには不利だったように思う (次ページ) # 内容 ノンコードでできたか 1

    読込み(S3のcsv)、型変更 できた 2 サンプル、統計量、分布の確認 できた 3 ユニオン できた 4 ジョイン できた 5 不要項目の削除 できた 6 加工項目の追加 できた 7 絞込み(フィルタ) わからなかった 8 集計 わからなかった 9 ピボット わからなかった 10 出力(S3のcsv) できた?
  7. まとめ ⚫ 所感 • 今回のお題からは、TableauPrepの代わりは辛そう ➢ ノンコードでできないことがあった ➢ 出力のジョブに約6分弱もかかった(x4largeなのに) ➢

    GUIのユーザビリティに差がある • 一方、お題には出てこない機械学習用の前処理機能がある これらは、TableauPrepには無いもの(現時点) ➢ カテゴリのダミー変数化(OneHotエンコーディングなど) ➢ 統計的手法による、外れ値処理・欠損値処理 ➢ 予測精度の味見 etc 18
  8. まとめ ⚫ 所感 • おそらく、想定するユースケースが元々違うんだろう ➢ TableauPrep: ビジネスパーソンの可視化分析の前処理 ➢ SMDataWrangler:

    エンジニアの機械学習の前処理 • SMDataWranglerは、機械学習データパイプラインへの組 み込みや、AWSの他サービスとの連携、といったシーンで強み が期待できるんじゃないか • そう考えると今回はお題がずれてた気がするし、機能もまだま だ把握しきれてないので、もう少し調べてみようかと思う 19