Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
model_pipeline_final.pdf
Search
Maxwell
September 18, 2018
Science
1
220
model_pipeline_final.pdf
model pipeline and others in Home Credit Default Risk competition.
Thanks to team mates.
Maxwell
September 18, 2018
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
900
Great Barrier Reef Model Pipeline: 15th place
hoxomaxwell
1
230
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
170
Kaggle Hungry Geese
hoxomaxwell
1
130
HuBMAP 17th place model pipeline
hoxomaxwell
1
120
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.4k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
430
Cornell Birdcall 36th place solution
hoxomaxwell
2
250
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.8k
Other Decks in Science
See All in Science
Lean4による汎化誤差評価の形式化
milano0017
1
410
データマイニング - コミュニティ発見
trycycle
PRO
0
190
高校生就活へのDA導入の提案
shunyanoda
0
6.2k
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
260
HajimetenoLT vol.17
hashimoto_kei
1
160
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
460
Hakonwa-Quaternion
hiranabe
1
170
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
310
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
420
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.8k
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
400
Featured
See All Featured
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
200
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
190
Into the Great Unknown - MozCon
thekraken
40
2.2k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
From π to Pie charts
rasagy
0
110
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Building Adaptive Systems
keathley
44
2.9k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Designing for Timeless Needs
cassininazir
0
110
Transcript
ikiri_DS Model PipeLine 600+1 ( LB804 ) FEATURES 1000+1 (
LB803 ) meta app meta bur Kernel GP Nejumi features Tereka features + LGBM 5 3 tosh 5 + CatBoost 5 2 1 + LGBM * 4 3 1 + CNN 7 Residual 2 + ExtTree 4 3 1 Residual 1 ( corrected with residual regression ) Blending CV 0.8094 Adversarial Stochastic Blending CV 0.8096 Adversarial Stochastic Blending CV 0.81050 * model drawn in next page + NN 1 3 ONODERA Maxwell Nejumi Tereka RK 1 2 3 4 5 6 7 Branden features 8 Branden + NN 1 3 takuoko features 9 Angus features 10 takuoko nejumi feature Angus + Res2 + LGBM 1 6 + Res1 + LGBM 1 6 1 or 2 or 5 + LGBM 1 or 2 or 5 + CatBoost or + LGBM 5 1 or 2 5 + LGBM 8 + LGBM 9 + LGBM 10 Adversarial Stochastic Blending CV : 0.8061 29.Aug.2018 Tam Tam features 11 + LGBM 11 + RGF 1 + LGBM 11 + RNN 7 1 * using hidden layer as additional features to correct residuals. + CNN 7 + hidden + Res3 + LGBM 1 6 + RGF 1 + Res2 + LGBM 1 6 + LGBM 5 RK features 12 + LGBM 12 1 or 2 12 + LGBM 8 1 or 2 8 + LGBM 3 1 5 or 3 2 5 + LGBM 8 1 12 or 8 2 12 Public 0.8085 17 th Private 0.8017 18 th + LGBM 8 + LGBM 9 + LGBM 10 Ireko DAE 13 Ireko8 + NN 1 13 + NN 1 + NN 1 13 Nejumi prediction Public 0.8093 10 th Private 0.8016 18 th Public 0.8080 23 th Private 0.8028 14 th + RNN 7 1 Public 0.8110 3 rd Private 0.8042 5 th Giba Post Processing Public 2nd 0.81241 Private 2nd 0.80561 Home Credit Default Risk partial partial partial + LGBM 8 1 or 2 8 or 12 + LGBM 3 1 or 2 3 or 12 3 + LGBM 6 1 Residual 3 + hidden + LGBM 1 6' or 6' 1 + LGBM 6' 2 Blending
ikiri_DS Model PipeLine 600+1 ( LB804 ) FEATURES 1000+1 (
LB803 ) meta app meta bur Kernel GP Nejumi features Tereka features tosh + LGBM * 4 3 1 + CNN 7 Residual 2 Residual 1 ( corrected with residual regression ) Blending CV 0.8085 Adversarial Stochastic Blending CV 0.8085 Adversarial Stochastic Blending CV 0.8097 * model drawn in next page ONODERA Maxwell Nejumi Tereka RK 1 2 3 4 5 6 7 Branden features 8 Branden + NN 1 3 takuoko features 9 Angus features 10 takuoko nejumi feature Angus + Res2 + LGBM 1 6 + Res1 + LGBM 1 6 + LGBM 8 + LGBM 9 + LGBM 10 Adversarial Stochastic Blending CV : 0.8061 29.Aug.2018 Tam Tam features 11 + LGBM 11 + LGBM 11 + RNN 7 1 * using hidden layer as additional features to correct residuals. + CNN 7 + hidden + Res3 + LGBM 1 6 + RGF 1 + Res2 + LGBM 1 6 + LGBM 5 RK features 12 + LGBM 12 1 or 2 12 + LGBM 8 1 or 2 8 Public 0.8071 26 th Private 0.8009 37 th + LGBM 8 + LGBM 9 + LGBM 10 Ireko DAE 13 Ireko8 + NN 1 13 + NN 1 + NN 1 13 Nejumi prediction Public 0.8082 23 th Private 0.8022 18 th Public 0.8080 23 th Private 0.8028 14 th Public 0.8099 7 th Private 0.8040 6 th Giba Post Processing Home Credit Default Risk partial + LGBM 8 1 12 or 8 2 12 partial 1 or 2 + LGBM + LGBM 6 1 Residual 3 + hidden + LGBM 1 6' or 6' 1 + LGBM 6' 2 Blending + ExtTree 4 3 1 + NN 1 3 + RGF 1 + LGBM 4 3 2 + XGB 4 3 1 + NN 1 + RNN 7 1 + hidden + Res3 + LGBM 1 6 + Res1 + LGBM 1 6 + hidden + Res4 + LGBM 1 6 stacking with LGBM CV 0.8080 Public 0.8070 / Private 0.8015 Stacking prediction Stacking + LGBM 3 1 or 2 3
application bureau bureau balance AUC : 0.683 (SEED71) 0.683 (SEEDs
avg) AUC 0.772 (SEED71) 0.773 (SEEDs avg) XGBoost app meta feature XGBoost prev meta feature 229 features 300 features all data stacking-like Light GBM 5 stratified fold ( shuffle = True ) 5 / 8 SEEDs rank averaged SEED : 71 for model fit SEED : 710, 711, 712, 713, 714 ( 715, 716, 717 ) for OOF prediction hyper parameter tuned for 603 features (reflected on meta features) XGBoost bureau meta feature ONODERA BASIC FEATURES 600 features NEJUMI FEATURES ( interest rate ) 1 feature 603 ( 604 ) features Local CV 0.80641 Public LB / Private LB 0.80569 / 0.79853 100 th / 105 th AUC 0.710 (SEED71) 0.712 (SEEDs avg) previous inst POS_CASH credit 952 features Local CV 0.80646 LB 0.804 ( ~ 0.805 ) Maxwell 603 ( 604 ) selected features based on ONODERA criteria w/o feature selection Stacking-like Light GBM