Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
About Spectral Clustering
Search
Shunya Ueta
October 16, 2014
Research
0
2.8k
About Spectral Clustering
Spectral Clusteringというクラスタリング手法についての基本的な説明のスライドです。
@MMA_LAB
Shunya Ueta
October 16, 2014
Tweet
Share
More Decks by Shunya Ueta
See All by Shunya Ueta
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.3k
Query Understanding for Search Engines. Chap2 Query Classification
hurutoriya
0
320
Introducing "Challenges and research opportunities in eCommerce search and recommendations"
hurutoriya
0
190
Auto Content Moderation in C2C e-Commerce at OpML20
hurutoriya
0
480
TFX: A tensor flow-based production-scale machine learning platform
hurutoriya
0
190
Applied machine learning at facebook a datacenter infrastructure perspective HPCA18
hurutoriya
0
170
machine learning tips in the python world PRMLer Night
hurutoriya
1
630
パターン認識と機械学習 第1章 #PRML学ぼう PRML輪講 #2 / PRML Seminar 2 go to introduction in machine learning
hurutoriya
1
2.8k
複数人でコードを書く際のFist Step
hurutoriya
0
350
Other Decks in Research
See All in Research
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
540
marukotenant01/tenant-20240916
marketing2024
0
500
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
55
19k
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
660
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
150
クラウドソーシングによる学習データ作成と品質管理(セキュリティキャンプ2024全国大会D2講義資料)
takumi1001
0
280
Kaggle役立ちアイテム紹介(入門編)
k951286
14
4.6k
日本語医療LLM評価ベンチマークの構築と性能分析
fta98
3
640
Weekly AI Agents News! 7月号 プロダクト/ニュースのアーカイブ
masatoto
0
160
FOSS4G 山陰 Meetup 2024@砂丘 はじめの挨拶
wata909
1
110
ニューラルネットワークの損失地形
joisino
PRO
35
16k
大規模言語モデルを用いた日本語視覚言語モデルの評価方法とベースラインモデルの提案 【MIRU 2024】
kentosasaki
2
520
Featured
See All Featured
Designing the Hi-DPI Web
ddemaree
280
34k
Making Projects Easy
brettharned
115
5.9k
A Philosophy of Restraint
colly
203
16k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
The Language of Interfaces
destraynor
154
24k
Typedesign – Prime Four
hannesfritz
40
2.4k
Embracing the Ebb and Flow
colly
84
4.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
How GitHub (no longer) Works
holman
310
140k
Writing Fast Ruby
sferik
627
61k
Transcript
About Spectral Clustering Univ. of Tsukuba MMA Lab Shunya
Ueta
目次 1. Spectral Graph 1. About 2. Graph
Laplacian Matrix 3. 応用例 2. Spectral Clustering 3. 実装 2
About Spectral Graph 歴史: 1950年代~ 目的:
グラフの特徴とグラフの固有値・固有ベクトル を結びつける 応用例: Spectral Clustering 画像領域分割 3
Graph Laplacian matrix 4 定義: 4 2 3
5 1 [ 0 1 0 1 0 ] [ 1 0 1 1 0 ] [ 0 1 0 0 1 ] [ 1 1 0 0 1 ] [ 0 0 1 1 0 ] [ 2 0 0 0 0 ] [ 0 3 0 0 0 ] [ 0 0 2 0 0 ] [ 0 0 0 3 0 ] [ 0 0 0 0 2 ] AG DG G n頂点無向グラフ G = (V, E) : AG : DG : Gの近接行列 Gの次数行列 LG = DG AG ラプラシアン行列 [ 2 -‐1 0 -‐1 0 ] [ -‐1 3 -‐1 -‐1 0 ] [ 0 -‐1 2 0 -‐1 ] [ -‐1 -‐1 0 3 -‐1 ] [ 0 0 -‐1 -‐1 2 ] LG = =
Spectral Graphの応用例 画像領域分割 : 画素毎の類似画像 5
Spectral Graphの応用例 画像領域分割 6
Spectral Grapth の応用例 Spectral Clustering 7
Spectral Clustering 8 P次元 n 個 .
. . 目的 p次元のデータn個を kクラスタに分類したい グラフ表現 データをグラフで表す Laplacian matrix グラフの行列表現 n n 対称行列 固有値集合(スペクトラム)を求める 固有ベクトルを小さいものから k番目までを選定 k n
Graph Laplacian matrix 9 定義: 4 2 3
5 1 [ 0 1 0 1 0 ] [ 1 0 1 1 0 ] [ 0 1 0 0 1 ] [ 1 1 0 0 1 ] [ 0 0 1 1 0 ] [ 2 0 0 0 0 ] [ 0 3 0 0 0 ] [ 0 0 2 0 0 ] [ 0 0 0 3 0 ] [ 0 0 0 0 2 ] AG DG G n頂点無向グラフ G = (V, E) : AG : DG : Gの近接行列 Gの次数行列 LG = DG AG ラプラシアン行列 [ 2 -‐1 0 -‐1 0 ] [ -‐1 3 -‐1 -‐1 0 ] [ 0 -‐1 2 0 -‐1 ] [ -‐1 -‐1 0 3 -‐1 ] [ 0 0 -‐1 -‐1 2 ] LG = =
ProperLes of Laplacian matrix 10 1. Lは部分対角優位行列なので全ての固有値は 0 以上
2. L の最小固有値は 0 であり、対応する固有ベクトルは全要素1の n 次元ベクトル 3. 固有値0の個数はグラフの連結部の数 連結部A 連結部B Laplacian matrix グラフの行列表現 対称行列 A B 1 1 1 0 0 0 I 0 = x x 固有値 対角行列
ProperLes of Laplacian matrix 11 1. Lは部分対角優位行列なので全ての固有値は 0 以上
2. L の最小固有値は 0 であり、対応する固有ベクトルは全要素1の n 次元ベクトル 3. 固有値0の個数はグラフの連結部の数 連結部A 連結部B Laplacian matrix グラフの行列表現 対称行列 A B 0 0 0 1 1 1 I 0 = x x 固有値 対角行列
Spectral Clustering 12 理想的なグラフ状態 各行に対して各列の要素が クラスタを示している
k n 1 1 0 0 0 0 0 1 0 0 i番目の行はあるデータX_i が所属するクラスタを 示している 0 0 0 1 1