Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
About Spectral Clustering
Search
Shunya Ueta
October 16, 2014
Research
0
2.9k
About Spectral Clustering
Spectral Clusteringというクラスタリング手法についての基本的な説明のスライドです。
@MMA_LAB
Shunya Ueta
October 16, 2014
Tweet
Share
More Decks by Shunya Ueta
See All by Shunya Ueta
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
3.5k
Query Understanding for Search Engines. Chap2 Query Classification
hurutoriya
0
460
Introducing "Challenges and research opportunities in eCommerce search and recommendations"
hurutoriya
0
270
Auto Content Moderation in C2C e-Commerce at OpML20
hurutoriya
0
680
TFX: A tensor flow-based production-scale machine learning platform
hurutoriya
0
280
Applied machine learning at facebook a datacenter infrastructure perspective HPCA18
hurutoriya
0
250
machine learning tips in the python world PRMLer Night
hurutoriya
1
690
パターン認識と機械学習 第1章 #PRML学ぼう PRML輪講 #2 / PRML Seminar 2 go to introduction in machine learning
hurutoriya
1
3.1k
複数人でコードを書く際のFist Step
hurutoriya
0
400
Other Decks in Research
See All in Research
超高速データサイエンス
matsui_528
1
170
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
370
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
560
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
240
能動適応的実験計画
masakat0
2
900
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
290
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
770
2025/7/5 応用音響研究会招待講演@北海道大学
takuma_okamoto
1
230
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
270
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1k
単施設でできる臨床研究の考え方
shuntaros
0
3.1k
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
270
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Agile that works and the tools we love
rasmusluckow
331
21k
4 Signs Your Business is Dying
shpigford
186
22k
KATA
mclloyd
PRO
32
15k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Facilitating Awesome Meetings
lara
57
6.6k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Six Lessons from altMBA
skipperchong
29
4k
A Tale of Four Properties
chriscoyier
161
23k
Transcript
About Spectral Clustering Univ. of Tsukuba MMA Lab Shunya
Ueta
目次 1. Spectral Graph 1. About 2. Graph
Laplacian Matrix 3. 応用例 2. Spectral Clustering 3. 実装 2
About Spectral Graph 歴史: 1950年代~ 目的:
グラフの特徴とグラフの固有値・固有ベクトル を結びつける 応用例: Spectral Clustering 画像領域分割 3
Graph Laplacian matrix 4 定義: 4 2 3
5 1 [ 0 1 0 1 0 ] [ 1 0 1 1 0 ] [ 0 1 0 0 1 ] [ 1 1 0 0 1 ] [ 0 0 1 1 0 ] [ 2 0 0 0 0 ] [ 0 3 0 0 0 ] [ 0 0 2 0 0 ] [ 0 0 0 3 0 ] [ 0 0 0 0 2 ] AG DG G n頂点無向グラフ G = (V, E) : AG : DG : Gの近接行列 Gの次数行列 LG = DG AG ラプラシアン行列 [ 2 -‐1 0 -‐1 0 ] [ -‐1 3 -‐1 -‐1 0 ] [ 0 -‐1 2 0 -‐1 ] [ -‐1 -‐1 0 3 -‐1 ] [ 0 0 -‐1 -‐1 2 ] LG = =
Spectral Graphの応用例 画像領域分割 : 画素毎の類似画像 5
Spectral Graphの応用例 画像領域分割 6
Spectral Grapth の応用例 Spectral Clustering 7
Spectral Clustering 8 P次元 n 個 .
. . 目的 p次元のデータn個を kクラスタに分類したい グラフ表現 データをグラフで表す Laplacian matrix グラフの行列表現 n n 対称行列 固有値集合(スペクトラム)を求める 固有ベクトルを小さいものから k番目までを選定 k n
Graph Laplacian matrix 9 定義: 4 2 3
5 1 [ 0 1 0 1 0 ] [ 1 0 1 1 0 ] [ 0 1 0 0 1 ] [ 1 1 0 0 1 ] [ 0 0 1 1 0 ] [ 2 0 0 0 0 ] [ 0 3 0 0 0 ] [ 0 0 2 0 0 ] [ 0 0 0 3 0 ] [ 0 0 0 0 2 ] AG DG G n頂点無向グラフ G = (V, E) : AG : DG : Gの近接行列 Gの次数行列 LG = DG AG ラプラシアン行列 [ 2 -‐1 0 -‐1 0 ] [ -‐1 3 -‐1 -‐1 0 ] [ 0 -‐1 2 0 -‐1 ] [ -‐1 -‐1 0 3 -‐1 ] [ 0 0 -‐1 -‐1 2 ] LG = =
ProperLes of Laplacian matrix 10 1. Lは部分対角優位行列なので全ての固有値は 0 以上
2. L の最小固有値は 0 であり、対応する固有ベクトルは全要素1の n 次元ベクトル 3. 固有値0の個数はグラフの連結部の数 連結部A 連結部B Laplacian matrix グラフの行列表現 対称行列 A B 1 1 1 0 0 0 I 0 = x x 固有値 対角行列
ProperLes of Laplacian matrix 11 1. Lは部分対角優位行列なので全ての固有値は 0 以上
2. L の最小固有値は 0 であり、対応する固有ベクトルは全要素1の n 次元ベクトル 3. 固有値0の個数はグラフの連結部の数 連結部A 連結部B Laplacian matrix グラフの行列表現 対称行列 A B 0 0 0 1 1 1 I 0 = x x 固有値 対角行列
Spectral Clustering 12 理想的なグラフ状態 各行に対して各列の要素が クラスタを示している
k n 1 1 0 0 0 0 0 1 0 0 i番目の行はあるデータX_i が所属するクラスタを 示している 0 0 0 1 1