σ(W(x 4 + x 5 + x 6 + x 7 )) h 7 = σ(W(x 5 + x 6 + x 7 )) h 6 = σ(W(x 3 + x 5 + x 7 )) h 4 = σ(W(x 3 + x 4 + x 5 )) h 1 = σ(W(x 1 + x 3 )) h 2 = σ(W(x 2 + x 3 )) h 3 = σ(W(x 1 + x 2 + x 3 + x 4 + x 6 )) ◼ 特徴を集約して変換する 集約関数は全ての頂点で共有する 例:和集約
5 = σ(V(h 4 + h 5 + h 6 + h 7 )) z 7 = σ(V(h 5 + h 6 + h 7 )) z 6 = σ(V(h 3 + h 5 + h 7 )) z 4 = σ(V(h 3 + h 4 + h 5 )) z 1 = σ(V(h 1 + h 3 )) z 2 = σ(V(h 2 + h 3 )) z 3 = σ(V(h 1 + h 2 + h 3 + h 4 + h 6 ))