$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
制約下の医療LLM Observability 〜セキュアなデータ活用と専門家による改善サイク...
Search
KAKEHASHI
PRO
October 26, 2025
Technology
2
210
制約下の医療LLM Observability 〜セキュアなデータ活用と専門家による改善サイクルの実現〜
https://o11ycon.jp/
Observability Conference Tokyo 2025
での登壇資料です
KAKEHASHI
PRO
October 26, 2025
Tweet
Share
More Decks by KAKEHASHI
See All by KAKEHASHI
なぜ使われないのか?──定量×定性で見極める本当のボトルネック
kakehashi
PRO
1
760
KAKEHASHI❤️Hono
kakehashi
PRO
1
320
生成AIが拓く医療DXの進化と壁
kakehashi
PRO
1
220
品質と速度を両立する、私たちのフロントエンドテストの工夫と取り組み
kakehashi
PRO
2
150
爆速でプロダクトをリリースしようと思ったらマイクロフロントエンドを選んでいた
kakehashi
PRO
5
3k
生成AI時代に必要な価値ある意思決定を育てる「開発プロセス定義」を用いた中期戦略
kakehashi
PRO
2
2.1k
プロダクトの成長に合わせたアーキテクチャの段階的進化と成長痛、そして、ユニットエコノミクスの最適化
kakehashi
PRO
1
280
ユーザー課題を愛し抜く――AI時代のPdM価値
kakehashi
PRO
1
670
「AIと一緒にやる」が当たり前になるまでの奮闘記
kakehashi
PRO
3
700
Other Decks in Technology
See All in Technology
Eight Engineering Unit 紹介資料
sansan33
PRO
0
5.7k
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
110
私も懇親会は苦手でした ~苦手だからこそ懇親会を楽しむ方法~ / 20251127 Masaki Okuda
shift_evolve
PRO
4
550
Modern Data Stack大好きマンが語るSnowflakeの魅力
sagara
0
280
Oracle Cloud Infrastructure:2025年11月度サービス・アップデート
oracle4engineer
PRO
1
110
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
290
Symfony AI in Action
el_stoffel
2
370
バグハンター視点によるサプライチェーンの脆弱性
scgajge12
2
440
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
640
Claude Code はじめてガイド -1時間で学べるAI駆動開発の基本と実践-
oikon48
42
25k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
“決まらない”NSM設計への処方箋 〜ビットキーにおける現実的な指標デザイン事例〜 / A Prescription for "Stuck" NSM Design: Bitkey’s Practical Case Study
bitkey
PRO
1
340
Featured
See All Featured
BBQ
matthewcrist
89
9.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Scaling GitHub
holman
464
140k
Context Engineering - Making Every Token Count
addyosmani
9
460
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Designing for Performance
lara
610
69k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Why Our Code Smells
bkeepers
PRO
340
57k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Visualization
eitanlees
150
16k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Transcript
制約下の医療LLMオブザーバビリティ 〜セキュアなデータ活用と 専門家による改善サイクルの実現〜 Observability Conference 2025 2025.10.27 株式会社カケハシ 保坂 桂佑
自己紹介 保坂 桂佑 (@free_skier) 株式会社カケハシ データサイエンティスト データ分析コンサル → リクルートでDS/MLエンジニア/EM →
カケハシ 著書『Kaggleで勝つデータ分析の技術』 (共著) LLMを活用した機能開発において、AIワークフロー の品質担保や改善を担当しています 2 / 21
3 / 21
4 / 21
5 / 21
カケハシの生成AI活用における取り組み領域 6 / 21
なぜ医療LLMのオブザーバビリティが難しいのか? 相反する2つの要求を同時に満たす必要があるため 厳格なデータ保護 個人情報保護法、医療情報ガイドラインへの準拠 マルチモーダルなデータ(音声・画像等)の保護は更に高難度 高い出力品質の要求 医療においては患者さんの健康に影響がないよう、何よりも正確性が重視される ハルシネーション(誤った回答)のリスクを低減する必要がある 継続的な監視と改善活動が不可欠 7
/ 21
本日の内容 開発運用中の医療LLMシステムにおいて、どのようにオブザーバビリティを確保したか、どのよう にドメインエキスパートとともに改善サイクルを回せるようにしたかをご紹介します。 実現したいこと どのように実現したか ドメインエキスパートによる改善サイクル 8 / 21
システム構成 本番環境 LLMアプリケーションが稼働 調査環境(セキュア) セキュアブラウザー+VPN経由でアク セス Databricksは調査分析に必要な機能 がオールインワン 秘匿性の高いデータが必要な場面で使 用
モニタリング環境(Datadog) 定期モニタリング、分析を実施 プロトタイピング環境(Dify) 隔離環境外にあるため、本番データは 直接扱えない 9 / 21
実現したいこと 医療LLMシステムにおいて、以下の3つを両立させたい データ保護 機密情報は高セキュリティ環境から出さない セキュアブラウザー経由でのみデータにアクセス LLMの挙動監視 機密性の低い情報: トレース情報として取得し、モニタリング環境で監視 機密性の高い情報: LLM出力やマルチモーダルデータを調査環境で確認
本番相当の環境での検証 本番相当の環境でプロンプト検証、ワークフロー検証ができる ドメインエキスパートが自律的に改善サイクルを回せる 10 / 21
実現方法 以下の3つの機能を通じて実現 トレース情報の取得、連携 セキュア環境へのデータ連携 本番相当の環境でのワークフロー検証 11 / 21
トレース情報の取得、連携 LLMフレームワークに依存しない、自前の トレース情報収集 自前でトレース情報を構築して出力する仕 組みを実装 機密性の低い情報(レスポンスタイム、ト ークン数等)を収集 12 / 21
トレース情報の取得、連携(詳細) 13 / 21
セキュア環境へのデータ連 携 本番DBに影響を与えず、セキュアにデータ を連携 注意すべき点 本番DBに影響が出ない形でデータ連携 コストを意識 14 / 21
セキュア環境へのデータ連 携(詳細) DatabricksのLakehouse Federationを 使用 Databricksの権限管理の元で本番環境のDB にアクセスできる仕組み ホットスタンバイの利用により本番影響を 回避 夜間バッチで前日までのデータを同期
15 / 21
本番相当の環境でのワーク フロー検証 Difyはグラフィカルな画面でプロンプト・ ワークフローを構築できる しかし、Difyは隔離環境の外にあるた め、データを入れられない 本番環境とは挙動を厳密に一致させるこ とができない 最終的には本番環境相当のワークフロー で検証を行いたい
16 / 21
本番相当の環境でのワーク フロー検証(詳細) Databricksから本番環境のワークフロ ー実行APIをコールできるように AWS VPC Endpoint + Private Linkに
より実現 スループット制限をかけて本番環境に影 響が出ないように 17 / 21
ドメインエキスパートによる改善サイクル セキュリティを確保しつつ、生成AIサービス提供において必要な情報が参照できるように Dify, Databricks環境を使い分けつつ、エンジニア・ドメインエキスパートが協力して改善を実 施 18 / 21
課題と今後の展望 精度劣化の自動検知・アラート プロトタイピング環境と本番Workflowの乖離を減らしたい 19 / 21
まとめ 医療LLMのオブザーバビリティは難しい 厳格なデータ保護 高い出力品質の要求 データを保護しつつ、LLMの挙動監視と本番相当の環境での検証を実現したい 以下の3つの機能を通じて実現 トレース情報の取得、連携 セキュア環境へのデータ連携 本番相当の環境でのワークフロー検証 エンジニア・ドメインエキスパートが協力して改善を実施できるようになった
20 / 21
21 / 21