Upgrade to Pro — share decks privately, control downloads, hide ads and more …

侵入者の特性を考慮した相互情報量に基づく巡回経路の評価 / Evaluation of pat...

konakalab
August 29, 2023

侵入者の特性を考慮した相互情報量に基づく巡回経路の評価 / Evaluation of patrol route based on mutual information considering characteristics of intruders

令和五年度 電気・電子・情報関係学会 東海支部連合大会で発表したスライドです.

konakalab

August 29, 2023
Tweet

More Decks by konakalab

Other Decks in Science

Transcript

  1. ➢ 巡回警備の条件: • 地図上での全ての通路を少なくとも一回は通る • 経路の始点と終点が同じ CPP(中国人郵便配達問題) CPPに帰着 地図が無向グラフ ➢

    CPP(中国人郵便配達問題): 無向グラフの全ての道を少なくとも一度通り、出発点に戻る経路 のうち総経路長が最小のものを求めるグラフ問題
  2. 地図上の通路を辺、通路同士の交差点を頂点、頂点間の距離を辺の重み 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

    1.0 1.0 1.0 1.0 1.0 1.0 2.0 地図を無向グラフに変換 与えられた元の地図 変換した無向グラフ
  3. 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

    1.0 1.0 1.0 1.0 1.0 • 次数(頂点に繋がっている辺の数)が奇数の頂点間のみで 最小重み最大マッチングを求める ➢ マッチング 次数が奇数の頂点6個を2個ずつ の三組に分ける 最小重み最大マッチングを用いた多重グラフの生成
  4. 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

    1.0 1.0 1.0 1.0 1.0 • 次数(頂点に繋がっている辺の数)が奇数の頂点間のみで 最小重み最大マッチングを求める ➢ マッチング 次数が奇数の頂点6個を2個ずつ の三組に分ける 最小重み最大マッチングを用いた多重グラフの生成 マッチングは15通り存在
  5. 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

    1.0 1.0 1.0 1.0 1.0 ➢ 結果 • マッチング:(1,2) (4,9) (6,7) • マッチングの重みの総和:4.0 最小重み最大マッチングを用いた多重グラフの生成
  6. 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

    1.0 1.0 1.0 1.0 1.0 ➢ 結果 • マッチング:(1,2) (4,9) (6,7) • マッチングの重みの総和:4.0 最小重み最大マッチングを用いた多重グラフの生成 15通りの中で最小のもの
  7. 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

    1.0 1.0 1.0 1.0 1.0 ➢ 結果 • マッチング:(1,2) (4,9) (6,7) • マッチングの重みの総和:4.0 最小重み最大マッチングを用いた多重グラフの生成 15通りの中で最小のもの ➢ 最小重み最大マッチング: 重みの総和が最小となるマッチング
  8. 提案手法の概要 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

    1.0 1.0 1.0 2.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 マッチングをランダムで一つ選択
  9. 提案手法の概要 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

    1.0 1.0 1.0 2.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 重みを非常に大きな値に変更 マッチングをランダムで一つ選択
  10. 提案手法の概要 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0

    1.0 1.0 1.0 1.0 1.0 16.0 ➢ 結果: • マッチング:(1,7) (2,6) (4,9) • 次数が奇数の頂点間のみで最小重み最大マッチングを求める
  11. 提案手法の概要 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0

    1.0 1.0 1.0 1.0 1.0 16.0 ➢ 結果: • マッチング:(1,7) (2,6) (4,9) • 次数が奇数の頂点間のみで最小重み最大マッチングを求める (6,7)を選ばないマッチング • マッチングの重みの総和:6.0
  12. 侵入者モデル 𝑇𝑐 = 500 観測 𝑆𝑠 ∆𝑡 ≤ 𝑇𝑐 𝑆𝑙

    ∆𝑡 > 𝑇𝑐 ∆𝑡𝑖 = {400,500,800,150} ∆𝑡𝑖 :𝑖番目の訪問間隔時間 𝑆 ∊ { 𝑆𝑠 , 𝑆𝑙 }:状態 𝑇𝑐 :インシデント発生に要する時間 侵入者モデル 𝑺𝒊 から𝑺𝒊+𝟏 を予測 𝑆𝑖 = { 𝑆𝑠 , 𝑆𝑠 , 𝑆𝑙 , 𝑆𝑠 }
  13. 侵入者モデル 𝑇𝑐 = 500 観測 𝑆𝑠 ∆𝑡 ≤ 𝑇𝑐 𝑆𝑙

    ∆𝑡 > 𝑇𝑐 ∆𝑡𝑖 = {400,500,800,150} ∆𝑡𝑖 :𝑖番目の訪問間隔時間 𝑆 ∊ { 𝑆𝑠 , 𝑆𝑙 }:状態 𝑇𝑐 :インシデント発生に要する時間 𝑺𝒊 から𝑺𝒊+𝟏 を予測 𝑆𝑖 = { 𝑆𝑠 , 𝑆𝑠 , 𝑆𝑙 , 𝑆𝑠 } ➀ ➀ 侵入者モデル
  14. 侵入者モデル 𝑇𝑐 = 500 観測 𝑆𝑠 ∆𝑡 ≤ 𝑇𝑐 𝑆𝑙

    ∆𝑡 > 𝑇𝑐 ∆𝑡𝑖 = {400,500,800,150} ∆𝑡𝑖 :𝑖番目の訪問間隔時間 𝑆 ∊ { 𝑆𝑠 , 𝑆𝑙 }:状態 𝑇𝑐 :インシデント発生に要する時間 𝑺𝒊 から𝑺𝒊+𝟏 を予測 𝑆𝑖 = { 𝑆𝑠 , 𝑆𝑠 , 𝑆𝑙 , 𝑆𝑠 } ➀ ➀ ➁ ➁ 侵入者モデル
  15. 侵入者モデル 𝑇𝑐 = 500 観測 𝑆𝑠 ∆𝑡 ≤ 𝑇𝑐 𝑆𝑙

    ∆𝑡 > 𝑇𝑐 ∆𝑡𝑖 = {400,500,800,150} ∆𝑡𝑖 :𝑖番目の訪問間隔時間 𝑆 ∊ { 𝑆𝑠 , 𝑆𝑙 }:状態 𝑇𝑐 :インシデント発生に要する時間 𝑺𝒊 から𝑺𝒊+𝟏 を予測 𝑆𝑖 = { 𝑆𝑠 , 𝑆𝑠 , 𝑆𝑙 , 𝑆𝑠 } ➀ ➀ ➁ ➁ ③ ③ 侵入者モデル
  16. 侵入者モデル 𝑇𝑐 = 500 観測 𝑆𝑠 ∆𝑡 ≤ 𝑇𝑐 𝑆𝑙

    ∆𝑡 > 𝑇𝑐 ∆𝑡𝑖 = {400,500,800,150} ∆𝑡𝑖 :𝑖番目の訪問間隔時間 𝑆 ∊ { 𝑆𝑠 , 𝑆𝑙 }:状態 𝑇𝑐 :インシデント発生に要する時間 𝑺𝒊 から𝑺𝒊+𝟏 を予測 𝑆𝑖 = { 𝑆𝑠 , 𝑆𝑠 , 𝑆𝑙 , 𝑆𝑠 } ➀ ➀ ➁ ➁ ③ ③ 相互情報量 侵入者モデル
  17. 評価指標 𝐽 = σ𝑒∈𝐸 𝐼𝑒 𝑆𝑖+1,𝑆𝑖 𝐸 (1) 𝐼𝑒 𝑆𝑖+1

    , 𝑆𝑖 = 𝐻 𝑆𝑖+1 − 𝐻 𝑆𝑖+1 𝑆𝑖 (2) 𝑆𝑠 ∆𝑡 ≤ 𝑇𝑐 𝑆𝑙 ∆𝑡 > 𝑇𝑐 E:グラフの辺集合 𝐼𝑒 𝑆𝑖+1 , 𝑆𝑖 :辺𝑒の状態𝑆𝑖+1 と𝑆𝑖 の相互情報量 評価指標 J :警備ロボットの訪問間隔の予測しづらさ 𝑃 𝑆𝑖+1 = 𝑆𝑙 ȁ𝑆 𝑖 = 𝑆𝑠
  18. 評価指標 𝐽 = σ𝑒∈𝐸 𝐼𝑒 𝑆𝑖+1,𝑆𝑖 𝐸 (1) 𝐼𝑒 𝑆𝑖+1

    , 𝑆𝑖 = 𝐻 𝑆𝑖+1 − 𝐻 𝑆𝑖+1 𝑆𝑖 (2) 𝑆𝑠 ∆𝑡 ≤ 𝑇𝑐 𝑆𝑙 ∆𝑡 > 𝑇𝑐 E:グラフの辺集合 𝐼𝑒 𝑆𝑖+1 , 𝑆𝑖 :辺𝑒の状態𝑆𝑖+1 と𝑆𝑖 の相互情報量 評価指標 J :警備ロボットの訪問間隔の予測しづらさ 𝑃 𝑆𝑖+1 = 𝑆𝑙 ȁ𝑆 𝑖 = 𝑆𝑠 Jの値は侵入者に与える情報量が 大きいほど大きくなり、 訪問間隔時間が乱雑であると言えるので 大きい方が望ましい
  19. 数値実験 ➢ 評価する巡回経路 (1) 本研究の提案手法で生成する巡回経路 (2) CPPの解法で生成する単一の巡回経路 ➢ 実験条件: •

    それぞれ100周分の巡回経路を生成 • ロボットの速度を1 [m/s] • 𝑇𝑐 = 800𝑠 実験で使用する無向グラフ
  20. 数値実験 (1)の J の値0.7068 各辺の𝑆𝑖+1 と𝑆𝑖 の相互情報量 (2)の J の値0.0

    (1) 本研究の提案手法で生成する巡回経路 提案手法によって生成される 巡回経路は訪問間隔が多様で 侵入者の予測を難しくしている