Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
P 値と有意差/分散分析 / P-value, Significant Difference ...
Search
Kenji Saito
PRO
January 03, 2025
Technology
0
120
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬の第9-10回で使用したスライドです。
Kenji Saito
PRO
January 03, 2025
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
FinTech 3-4 : Internet Technology and Governance
ks91
PRO
0
19
民主主義と博愛(Humanitarianism) / Democracy and Humanitarianism
ks91
PRO
0
1
ブロックチェーン概論 / Introduction to Blockchain
ks91
PRO
0
6
ブロックチェーンと分散ファイナンス概論 / Introduction to Blockchain and Decentralized Finance
ks91
PRO
0
47
Proof of Authenticity of General IoT Information with Tamper-Evident Sensors and Blockchain
ks91
PRO
0
5
FinTech 1-2 : Overview of FinTech
ks91
PRO
0
14
デジタルトランスフォーメーションと民主主義 / Digital Transformation and Democracy
ks91
PRO
0
19
We Never Took the Kobayashi Maru Test Until Now. What Do You Think of Our Solutions? — Journeys of the Mind Through a No-Win Game
ks91
PRO
0
24
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
79
Other Decks in Technology
See All in Technology
AWSにおけるTrend Vision Oneの効果について
shimak
0
130
Why Governance Matters: The Key to Reducing Risk Without Slowing Down
sarahjwells
0
110
【Oracle Cloud ウェビナー】クラウド導入に「専用クラウド」という選択肢、Oracle AlloyとOCI Dedicated Region とは
oracle4engineer
PRO
3
110
Escaping_the_Kraken_-_October_2025.pdf
mdalmijn
0
140
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
140
BirdCLEF+2025 Noir 5位解法紹介
myso
0
200
Azure SynapseからAzure Databricksへ 移行してわかった新時代のコスト問題!?
databricksjapan
0
140
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
Flaky Testへの現実解をGoのプロポーザルから考える | Go Conference 2025
upamune
1
430
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
3
360
20201008_ファインディ_品質意識を育てる役目は人かAIか___2_.pdf
findy_eventslides
1
460
データエンジニアがこの先生きのこるには...?
10xinc
0
450
Featured
See All Featured
Facilitating Awesome Meetings
lara
56
6.6k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Cost Of JavaScript in 2023
addyosmani
53
9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Transcript
Corporate data analysis — generated by Stable Diffusion XL v1.0
2024 9-10 P (WBS) 2024 9-10 P — 2025-01-06 – p.1/33
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 9-10 P — 2025-01-06 – p.2/33
( ) 1 12 2 • 2 12 2 (B
A ) • 3 12 9 • 4 12 9 • 5 12 16 • 6 12 16 t • 7 12 23 2 ( ) t • 8 12 23 2 ( ) t • 9 1 6 P • 10 1 6 • 11 1 20 12 1 20 13 1 27 14 1 27 W-IOI 2024 9-10 P — 2025-01-06 – p.3/33
( 20 25 ) 1 (20 ) • 2 R
( 55 ) • 3 (32 ) • 4 (14 ) • 5 ( Git) (22 ) • 6 ( ) (24 ) • 7 (1) (25 ) • 8 (2) (25 ) • 9 R ( ) (1) — Welch (17 ) • 10 R ( ) (2) — (21 ) • 11 R ( ) (1) — (15 ) • 12 R ( ) (2) — (19 ) • 13 GPT-4 (19 ) • 14 GPT-4 (29 ) • 15 ( ) LaTeX Overleaf (40 ) • 8 (12/16 ) / (2 ) OK / 2024 9-10 P — 2025-01-06 – p.4/33
( Student µ 95% ) 7 2 t ( t
) 2 ( ) 2 d ( ) ← [ 3] σd 2 t 8 2 t ( t ) 2 ( ) ( ) ← [ 4] σ 2 t 2024 9-10 P — 2025-01-06 – p.5/33
2 2 t 1 9 P P 10 H0 HA
k, N, ¯ ¯ x σ2 ( )MSwithin ( )MSbetween MStotal F F 2024 9-10 P — 2025-01-06 – p.6/33
2024 9-10 P — 2025-01-06 – p.7/33
4. t (1) 2 t (2) 2 t (3) 2025
1 2 ( ) 23:59 JST ( ) Waseda Moodle (Q & A ) (1)(2) Discord 2024 9-10 P — 2025-01-06 – p.8/33
. . . . . . 17 14 (1/3( )
) ( ) → 14 ( ) ( ) → 6 → 3 ( ) → 5 ( ) ( OK) 2 t . . . . . . / . . . ( ) 2024 9-10 P — 2025-01-06 – p.9/33
t t ⇒ ( ) A A xA 2 B
B xB 2 df . . . ⇒ t σ z0.05 . . . ⇒ ( ) t 2024 9-10 P — 2025-01-06 – p.10/33
N (1/2) 2 t 2 2 “ ” 1. 1
2 2. 3. - 2 (n − 1) 4. ÷ ÷ t 5. t (n − 1) t t ⇒ . . . 0 ( ) 2024 9-10 P — 2025-01-06 – p.11/33
N (2/2) 2 t 2 2 1 2 1 2
2 “ ” 1. 2 1 2 2. 3. ( -2) 4. t 1÷ 2 t 5. t (n1 + n2 − 2) t t ⇒ 2024 9-10 P — 2025-01-06 – p.12/33
M ( ) [ 2 t ] 1Day 1Day 1Day
⇒ 2024 9-10 P — 2025-01-06 – p.13/33
K ⇒ . . . 2024 9-10 P — 2025-01-06
– p.14/33
2 t d : µd 0 ( 2 ) :
(1) d d, sd , n, df (2) |d| sd n |t| (3) t0.05 (df) < |t| ( ) R > t.test(sample2, sample1, paired=T) 2024 9-10 P — 2025-01-06 – p.15/33
2 t ( ) 10 ( ) ( ) (
) ( ) ( ) d ( ) d, ( ) sd , ( ) n, ( ) df ( ) t ( ) t ( ) d ( ) sd ( ) n ( ) t df 5% ( ) ( ) ( ) ( ) ( ) 2024 9-10 P — 2025-01-06 – p.16/33
2 t xA xB : µA − µB 0 (
2 ) : (1) xA − xB , sp , nA nB , df (2) |xA − xB | sp nA nB |t| (3) t0.05 (df) < |t| ( ) R > t.test(sample2, sample1, var.equal=T) 2024 9-10 P — 2025-01-06 – p.17/33
2 t ( ) ( ) ( ) ( )
( ) ( ) ( ( ) A B ( ) ) ( ) xA − xB , A B ( ) ( ) sp , ( ) nA nB , ( ) df = nA + nB − 2 ( ) t ( ) t ( ) xA − xB ( ) sp ( ) nA ,nB ( ) t df 5% ( ) ( ) ( ) ( ) ( ) ( ) 2024 9-10 P — 2025-01-06 – p.18/33
K 2 t ( ) ⇒ 2 2024 9-10 P
— 2025-01-06 – p.19/33
N ⇒ (σ) ( σ √n ) ( ) p.121
(standard error) (p.121) (sampling distribution) (p.120) (p.120) ( : ) 2024 9-10 P — 2025-01-06 – p.20/33
K ⇒ . . . AI ( ) . .
. ^^; ( ) 2024 9-10 P — 2025-01-06 – p.21/33
H t 2 Student t t 1 sin(α + β)
= sinαcosβ + cosαsinβ . . . ⇒ 2024 9-10 P — 2025-01-06 – p.22/33
U R ChatGPT ⇒ AI ( ) 2024 9-10 P
— 2025-01-06 – p.23/33
9 P P 2024 9-10 P — 2025-01-06 – p.24/33
α β P P H0 ( ) P 0.05 (P
= 0.015) (P = 0.361) 2024 9-10 P — 2025-01-06 – p.25/33
10 H0 HA k, N, ¯ ¯ x σ2 (
) MSwithin ( )MSbetween MStotal ( SStotal dftotal ) F F 2024 9-10 P — 2025-01-06 – p.26/33
(1/3) k (1) : (2) : σ2 ( ) N(µ,
σ2) µ1 = µ2 = · · · = µk N ( ) ¯ ¯ x ¯ ¯ x = k j=1 nj i=1 xji N (j i N ) 2024 9-10 P — 2025-01-06 – p.27/33
(2/3) ( )MSwithin σ2 MSwithin = SSwithin dfwithin = k
j=1 nj i=1 (xji − ¯ xj )2 N − k ( N− ) ( )MSbetween σ2 MSbetween = SSbetween dfbetween = k j=1 nj (¯ xj − ¯ ¯ x)2 k − 1 ( −1 ) ( H0 σ2 ) 2024 9-10 P — 2025-01-06 – p.28/33
(3/3) MStotal MStotal = SStotal dftotal = k j=1 nj
i=1 (xji − ¯ ¯ x)2 N − 1 ( N − 1 ) : SStotal = SSbetween + SSwithin, dftotal = dfbetween + dfwithin F F = MSbetween MSwithin F0.05 (dfbetween, dfwithin ) < F ( H0 ) 2024 9-10 P — 2025-01-06 – p.29/33
U ( p.227) 20 4 “ U.R” ( anova() )
pp.226–227 2024 9-10 P — 2025-01-06 – p.30/33
2024 9-10 P — 2025-01-06 – p.31/33
5. (1) ( ) (2) 2025 1 16 ( )
23:59 JST ( ) Waseda Moodle (Q & A ) (1)(2) Discord 2024 9-10 P — 2025-01-06 – p.32/33
2024 9-10 P — 2025-01-06 – p.33/33