Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning
Search
Abhinav Tushar
September 10, 2015
Research
6
260
Deep Learning
Introductory talk on deep learning
Abhinav Tushar
September 10, 2015
Tweet
Share
More Decks by Abhinav Tushar
See All by Abhinav Tushar
the garden of eden
lepisma
0
85
Technology
lepisma
0
67
Bio-Inspired Computing
lepisma
0
81
Maestro
lepisma
0
100
War and Economics
lepisma
0
100
Other Decks in Research
See All in Research
20240918 交通くまもとーく 未来の鉄道網編(こねくま)
trafficbrain
0
190
論文読み会 SNLP2024 Instruction-tuned Language Models are Better Knowledge Learners. In: ACL 2024
s_mizuki_nlp
1
340
熊本から日本の都市交通政策を立て直す~「車1割削減、渋滞半減、公共交通2倍」の実現へ~@公共交通マーケティング研究会リスタートセミナー
trafficbrain
0
120
説明可能AIの基礎と研究動向
yuyay
0
140
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
510
ダイナミックプライシング とその実例
skmr2348
2
310
Weekly AI Agents News! 8月号 プロダクト/ニュースのアーカイブ
masatoto
1
180
第79回 産総研人工知能セミナー 発表資料
agiats
1
140
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
470
ICLR2024: Reading "Training Unbiased Diffusion Models From Biased Dataset"
hotekagi
0
110
秘伝:脆弱性診断をうまく活用してセキュリティを確保するには
okdt
PRO
3
740
FOSS4G 山陰 Meetup 2024@砂丘 はじめの挨拶
wata909
1
110
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
268
27k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
15
2k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
700
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Visualization
eitanlees
145
15k
Embracing the Ebb and Flow
colly
84
4.5k
Scaling GitHub
holman
458
140k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.2k
A Philosophy of Restraint
colly
203
16k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Transcript
D E E P L E A R N I
N G
models AE / SAE RBM / DBN CNN RNN /
LSTM Memnet / NTM agenda questions What ? Why ? How ? Next ?
what why how next What ? AI technique for learning
multiple levels of abstractions directly from raw information
what why how next Primitive rule based AI Tailored systems
Hand Crafted Program Output Input
what why how next Classical machine learning Learning from custom
features Hand Crafted Features Learning System Output Input
what why how next Deep Learning based AI Learn everything
Learned Features (Lower Level) Learned Features (Higher Level) Learning System Output Input
None
https://www.youtube.com/watch?v=Q70ulPJW3Gk PPTX PDF (link to video below)
With the capacity to represent the world in signs and
symbols, comes the capacity to change it Elizabeth Kolbert (The Sixth Extinction) “
Why The buzz ?
what why how next Google Trends Deep Learning
what why how next
Crude timeline of Neural Networks 1950 1980 1990 2000 Perceptron
Backprop & Application NN Winter
2010 Stacking RBMs Deep Learning fuss
HUGE DATA Large Synoptic Survey Telescope (2022) 30 TB/night
HUGE CAPABILITIES GPGPU ~20x speedup Powerful Clusters
HUGE SUCCESS Speech, text understanding Robotics / Computer Vision Business
/ Big Data Artificial General Intelligence (AGI)
How its done ?
what why how next Shallow Network ℎ ℎ = (,
0) = ′(ℎ, 1) = (, ) minimize
what why how next Deep Network
what why how next Deep Network More abstract features Stellar
performance Vanishing Gradient Overfitting
what why how next Autoencoder ℎ Unsupervised Feature Learning
what why how next Stacked Autoencoder Y. Bengio et. all;
Greedy Layer-Wise Training of Deep Networks
what why how next Stacked Autoencoder 1. Unsupervised, layer by
layer pretraining 2. Supervised fine tuning
what why how next Deep Belief Network 2006 breakthrough Stacking
Restricted Boltzmann Machines (RBMs) Hinton, G. E., Osindero, S. and Teh, Y.; A fast learning algorithm for deep belief nets
Rethinking Computer Vision
what why how next Traditional Image Classification pipeline Feature Extraction
(SIFT, SURF etc.) Classifier (SVM, NN etc.)
what why how next Convolutional Neural Network Images taken from
deeplearning.net
what why how next Convolutional Neural Network
what why how next Convolutional Neural Network Images taken from
deeplearning.net
what why how next Convolutional Neural Network
what why how next The Starry Night Vincent van Gogh
Leon A. Gatys, Alexander S. Ecker and Matthias Bethge; A Neural Algorithm of Artistic Style
what why how next
what why how next Scene Description CNN + RNN Oriol
Vinyals et. all; Show and Tell: A Neural Image Caption Generator
Learning Sequences
what why how next Recurrent Neural Network Simple Elman Version
ℎ ℎ = ( , ℎ−1 , 0, 1) = ′(ℎ , 2)
what why how next Long Short Term Memory (LSTM) add
memory cells learn access mechanism Sepp Hochreiter and Jürgen Schmidhuber; Long short-term memory
None
what why how next
what why how next Fooling Deep Networks Anh Nguyen, Jason
Yosinski, Jeff Clune; Deep Neural Networks are Easily Fooled
Next Cool things to try
what why how next Hyperparameter optimization bayesian Optimization methods adadelta,
rmsprop . . . Regularization dropout, dither . . .
what why how next Attention & Memory NTMs, Memory Networks,
Stack RNNs . . . NLP Translation, description
what why how next Cognitive Hardware FPGA, GPU, Neuromorphic Chips
Scalable DL map-reduce, compute clusters
what why how next Deep Reinforcement Learning deepmindish things, deep
Q learning Energy models RBMs, DBNs . . .
https://www.reddit.com/r/MachineLearning/wiki
Theano (Python) | Torch (lua) | Caffe (C++) Github is
a friend
@AbhinavTushar ?