Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning
Search
Abhinav Tushar
September 10, 2015
Research
6
260
Deep Learning
Introductory talk on deep learning
Abhinav Tushar
September 10, 2015
Tweet
Share
More Decks by Abhinav Tushar
See All by Abhinav Tushar
the garden of eden
lepisma
0
85
Technology
lepisma
0
67
Bio-Inspired Computing
lepisma
0
86
Maestro
lepisma
0
100
War and Economics
lepisma
0
110
Other Decks in Research
See All in Research
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
150
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
530
Language is primarily a tool for communication rather than thought
ryou0634
4
790
Weekly AI Agents News!
masatoto
26
35k
アプリケーションから知るモデルマージ
maguro27
0
180
[依頼講演] 適応的実験計画法に基づく効率的無線システム設計
k_sato
0
180
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
270
TransformerによるBEV Perception
hf149
1
590
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
200
チュートリアル:Mamba, Vision Mamba (Vim)
hf149
5
1.7k
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
1
230
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
430
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Building Applications with DynamoDB
mza
91
6.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
48
2.2k
How to Ace a Technical Interview
jacobian
276
23k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
Speed Design
sergeychernyshev
25
670
Building a Scalable Design System with Sketch
lauravandoore
460
33k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
810
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
520
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
GraphQLとの向き合い方2022年版
quramy
44
13k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Transcript
D E E P L E A R N I
N G
models AE / SAE RBM / DBN CNN RNN /
LSTM Memnet / NTM agenda questions What ? Why ? How ? Next ?
what why how next What ? AI technique for learning
multiple levels of abstractions directly from raw information
what why how next Primitive rule based AI Tailored systems
Hand Crafted Program Output Input
what why how next Classical machine learning Learning from custom
features Hand Crafted Features Learning System Output Input
what why how next Deep Learning based AI Learn everything
Learned Features (Lower Level) Learned Features (Higher Level) Learning System Output Input
None
https://www.youtube.com/watch?v=Q70ulPJW3Gk PPTX PDF (link to video below)
With the capacity to represent the world in signs and
symbols, comes the capacity to change it Elizabeth Kolbert (The Sixth Extinction) “
Why The buzz ?
what why how next Google Trends Deep Learning
what why how next
Crude timeline of Neural Networks 1950 1980 1990 2000 Perceptron
Backprop & Application NN Winter
2010 Stacking RBMs Deep Learning fuss
HUGE DATA Large Synoptic Survey Telescope (2022) 30 TB/night
HUGE CAPABILITIES GPGPU ~20x speedup Powerful Clusters
HUGE SUCCESS Speech, text understanding Robotics / Computer Vision Business
/ Big Data Artificial General Intelligence (AGI)
How its done ?
what why how next Shallow Network ℎ ℎ = (,
0) = ′(ℎ, 1) = (, ) minimize
what why how next Deep Network
what why how next Deep Network More abstract features Stellar
performance Vanishing Gradient Overfitting
what why how next Autoencoder ℎ Unsupervised Feature Learning
what why how next Stacked Autoencoder Y. Bengio et. all;
Greedy Layer-Wise Training of Deep Networks
what why how next Stacked Autoencoder 1. Unsupervised, layer by
layer pretraining 2. Supervised fine tuning
what why how next Deep Belief Network 2006 breakthrough Stacking
Restricted Boltzmann Machines (RBMs) Hinton, G. E., Osindero, S. and Teh, Y.; A fast learning algorithm for deep belief nets
Rethinking Computer Vision
what why how next Traditional Image Classification pipeline Feature Extraction
(SIFT, SURF etc.) Classifier (SVM, NN etc.)
what why how next Convolutional Neural Network Images taken from
deeplearning.net
what why how next Convolutional Neural Network
what why how next Convolutional Neural Network Images taken from
deeplearning.net
what why how next Convolutional Neural Network
what why how next The Starry Night Vincent van Gogh
Leon A. Gatys, Alexander S. Ecker and Matthias Bethge; A Neural Algorithm of Artistic Style
what why how next
what why how next Scene Description CNN + RNN Oriol
Vinyals et. all; Show and Tell: A Neural Image Caption Generator
Learning Sequences
what why how next Recurrent Neural Network Simple Elman Version
ℎ ℎ = ( , ℎ−1 , 0, 1) = ′(ℎ , 2)
what why how next Long Short Term Memory (LSTM) add
memory cells learn access mechanism Sepp Hochreiter and Jürgen Schmidhuber; Long short-term memory
None
what why how next
what why how next Fooling Deep Networks Anh Nguyen, Jason
Yosinski, Jeff Clune; Deep Neural Networks are Easily Fooled
Next Cool things to try
what why how next Hyperparameter optimization bayesian Optimization methods adadelta,
rmsprop . . . Regularization dropout, dither . . .
what why how next Attention & Memory NTMs, Memory Networks,
Stack RNNs . . . NLP Translation, description
what why how next Cognitive Hardware FPGA, GPU, Neuromorphic Chips
Scalable DL map-reduce, compute clusters
what why how next Deep Reinforcement Learning deepmindish things, deep
Q learning Energy models RBMs, DBNs . . .
https://www.reddit.com/r/MachineLearning/wiki
Theano (Python) | Torch (lua) | Caffe (C++) Github is
a friend
@AbhinavTushar ?