Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Introduction To Hadoop

Introduction To Hadoop

Marc Cluet

June 18, 2013
Tweet

More Decks by Marc Cluet

Other Decks in Technology

Transcript

  1. What we’ll cover? ¡  Understand  Hadoop  components   ¡  Understand

     different  technologies  involved   ¡  Embrace  Big  Data!   Lynx  Consultants  ©  2013  
  2. What is Big Data? ¡   SQL  has  a  limited  ability

     to  process  changing  data   §  SQL  schemas  are  the  truth,  data  needs  to  fit  that   Lynx  Consultants  ©  2013  
  3. What is Big Data? ¡   Big  Data  is  the  solution!

      §  Data  can  be  truly  dynamic   Lynx  Consultants  ©  2013  
  4. What is Big Data? ¡   Big  Data  is  the  solution!

      §  Data  can  be  truly  dynamic   §  Designed  to  handle  Terabytes  of  data   Lynx  Consultants  ©  2013  
  5. What is Big Data? ¡   Big  Data  is  the  solution!

      §  Data  can  be  truly  dynamic   §  Designed  to  handle  Terabytes  of  data   §  Designed  for  fault  tolerance  and  securing  data   Lynx  Consultants  ©  2013  
  6. What is Big Data? ¡   Big  Data  is  the  solution!

      §  Data  can  be  truly  dynamic   §  Designed  to  handle  Terabytes  of  data   §  Designed  for  fault  tolerance  and  securing  data   §  Designed  around  exploiting  hardware  to  the  fullest   Lynx  Consultants  ©  2013  
  7. What is Big Data? ¡   Big  Data  is  the  solution!

      §  Data  can  be  truly  dynamic   §  Designed  to  handle  Terabytes  of  data   §  Designed  for  fault  tolerance  and  securing  data   §  Designed  around  exploiting  hardware  to  the  fullest   §  Designed  around  Map/Reduce   Lynx  Consultants  ©  2013  
  8. What is Hadoop? ¡   Hadoop  is  one  of  the  big

     players  for  Big  Data   §  Developed  as  an  Open  Source  implementation  to  implement   Google  BigTable   Lynx  Consultants  ©  2013  
  9. What is Hadoop? ¡   Hadoop  is  one  of  the  big

     players  for  Big  Data   §  Developed  as  an  Open  Source  implementation  to  implement   Google  BigTable   §  Mainly  developed  at  Yahoo!   Lynx  Consultants  ©  2013  
  10. What is Hadoop? ¡   Hadoop  is  one  of  the  big

     players  for  Big  Data   §  Developed  as  an  Open  Source  implementation  to  implement   Google  BigTable   §  Mainly  developed  at  Yahoo!   §  Current  companies  behind  it:  Hortonworks  and  Cloudera   Lynx  Consultants  ©  2013  
  11. What are the features of Hadoop? ¡   HDFS  –  Hadoop

     Distributed  File  System   §  HDFS  is  a  distributed  filesystem  across  many  nodes   §  Has  many  copies  of  your  data  (default:  3)   §  If  one  node  goes  down  makes  sure  all  the  data  is  rebalanced   Lynx  Consultants  ©  2013  
  12. What are the features of Hadoop? ¡   HDFS  –  Hadoop

     Distributed  File  System   Lynx  Consultants  ©  2013  
  13. What are the features of Hadoop? ¡   HDFS  –  Hadoop

     Distributed  File  System   ¡   Hbase  –  Hadoop  NoSQL  Database   §  Schemaless  Key-­‐Value  storage   §  All  data  exportable  in  JSON   Lynx  Consultants  ©  2013  
  14. What are the features of Hadoop? ¡   HDFS  –  Hadoop

     Distributed  File  System   ¡   Hbase  –  Hadoop  NoSQL  Database   Lynx  Consultants  ©  2013  
  15. What are the features of Hadoop? ¡   HDFS  –  Hadoop

     Distributed  File  System   ¡   Hbase  –  Hadoop  NoSQL  Database   ¡   Map/Reduce  –  The  key  to  it  all   §  This  was  invented  by  Google   §  Given  a  dataset  we  Map  all  that  match  a  criteria   §  Then  we  Reduce  this  to  a  result   Lynx  Consultants  ©  2013  
  16. What are the features of Hadoop? ¡  Map/Reduce  –  The

     key  to  it  all   Lynx  Consultants  ©  2013  
  17. What are the features of Hadoop? ¡   HDFS  –  Hadoop

     Distributed  File  System   ¡   Hbase  –  Hadoop  NoSQL  Database   ¡   Map/Reduce  –  The  key  to  it  all   ¡   Hive  –  SQL  for  NoSQL   §  Hive  provides  a  SQL  language  called  HiveSQL   §  Provides  a  good  entrance  for  SQL  users  :)   Lynx  Consultants  ©  2013  
  18. What are the features of Hadoop? ¡   HDFS  –  Hadoop

     Distributed  File  System   ¡   Hbase  –  Hadoop  NoSQL  Database   ¡   Map/Reduce  –  The  key  to  it  all   ¡   Hive  –  SQL  for  NoSQL   ¡   Pig  –  Map/Reduce  made  easy   §  Creates  data  results  given  a  reduced  language   §  Reinvents  SQL  somehow   Lynx  Consultants  ©  2013  
  19. What are the features of Hadoop? ¡   HDFS  –  Hadoop

     Distributed  File  System   ¡   Hbase  –  Hadoop  NoSQL  Database   ¡   Map/Reduce  –  The  key  to  it  all   ¡   Hive  –  SQL  for  NoSQL   ¡   Pig  –  Map/Reduce  made  easy   ¡   Flume  –  Fault  Tolerant  transport   Lynx  Consultants  ©  2013  
  20. What are the features of Hadoop? ¡   Flume   § 

    Divides  in  Sources,  Channels,  Sinks   §  Can  have  multiple  of  everything,  makes  it  fault  tolerant   §  Many  sources!   ▪  Avro,  Exec,  JMS,  Syslog,  HTTP,  NetCat,  Your  Own  (Java)   Lynx  Consultants  ©  2013  
  21. What are the features of Hadoop? ¡   Flume   § 

    Divides  in  Sources,  Channels,  Sinks   §  Can  have  multiple  of  everything,  makes  it  fault  tolerant   §  Many  sources!   §  Many  channels!   ▪  Memory,  File,  Your  Own  (Java)   Lynx  Consultants  ©  2013  
  22. What are the features of Hadoop? ¡   Flume   § 

    Divides  in  Sources,  Channels,  Sinks   §  Can  have  multiple  of  everything,  makes  it  fault  tolerant   §  Many  sources!   §  Many  channels!   §  Many  sinks!   ▪  Avro,  HDFS,  Logger,  IRC,  File,  Hbase,  ElasticSearch,  S3,  Community   sinks,  Your  Own  (Java)   Lynx  Consultants  ©  2013  
  23. How Hadoop looks like in a DC ¡   Components  

    §  Primary  Namenode   §  Secondary  Namenode   §  Data  Node   Lynx  Consultants  ©  2013  
  24. How Hadoop looks like in a DC ¡   Components  

    §  Primary  Namenode   ▪  Controls  all  the  cluster,  knows  where  the  data  resides   ▪  Runs  the  job  tracker  to  keep  track  of  Map/Reduce  jobs   ▪  Biggest  point  of  failure,  shadowing  it  is  a  potential  option   §  Secondary  Namenode   §  Data  Node   Lynx  Consultants  ©  2013  
  25. How Hadoop looks like in a DC ¡   Components  

    §  Primary  Namenode   §  Secondary  Namenode   ▪  Performs  secondary  cleanup  options   §  Data  Node   Lynx  Consultants  ©  2013  
  26. How Hadoop looks like in a DC ¡   Components  

    §  Primary  Namenode   §  Secondary  Namenode   §  Data  Node   ▪  Stores  all  the  information   ▪  Runs  Map/Reduce   Lynx  Consultants  ©  2013  
  27. How Hadoop looks like in a DC ¡   Components  

    Lynx  Consultants  ©  2013