$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
守りたいデータがある メルペイ クレジットスコアのこれからの話など / merpay-3
Search
M3 Engineering
September 05, 2018
Technology
0
3.7k
守りたいデータがある メルペイ クレジットスコアのこれからの話など / merpay-3
2018/9/5 に開催された「merpay×M3 機械学習 NIGHT」の発表資料です。
https://mercari.connpass.com/event/97213/
#merpay_ml
M3 Engineering
September 05, 2018
Tweet
Share
More Decks by M3 Engineering
See All by M3 Engineering
エムスリー全チーム紹介資料 / Introduction of M3 All Teams
m3_engineering
6
440k
エムスリーマネジメントチーム紹介資料 / Introduction of M3 Management Team
m3_engineering
4
6.2k
エムスリーエビデンス創出プロダクトチーム紹介資料 / Introduction of M3 Create Evidence Team
m3_engineering
4
8.3k
ギークの理想が7つ集まるエムスリーで夢を叶えよう - エムスリー株式会社
m3_engineering
1
19k
エムスリー基盤チーム紹介資料 / Introduction of M3 Platform Team
m3_engineering
4
16k
エムスリーMR君ファミリー開発チーム紹介資料 / Introduction of M3 MRkun Family Dev Team
m3_engineering
5
21k
エムスリーマルチデバイスチーム紹介資料 / Introduction of M3 Multi Device Team
m3_engineering
4
23k
エムスリーQAチーム紹介資料 / Introduction of M3 QA Team
m3_engineering
2
19k
エムスリー SREチーム紹介資料 / Introduction of M3 SRE Team
m3_engineering
2
19k
Other Decks in Technology
See All in Technology
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
460
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
180
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.3k
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
250
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
210
【開発を止めるな】機能追加と並行して進めるアーキテクチャ改善/Keep Shipping: Architecture Improvements Without Pausing Dev
bitkey
PRO
1
130
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9.9k
MariaDB Connector/C のcaching_sha2_passwordプラグインの仕様について
boro1234
0
1k
Authlete で実装する MCP OAuth 認可サーバー #CIMD の実装を添えて
watahani
0
180
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
410
モダンデータスタックの理想と現実の間で~1.3億人Vポイントデータ基盤の現在地とこれから~
taromatsui_cccmkhd
2
270
Building Serverless AI Memory with Mastra × AWS
vvatanabe
0
590
Featured
See All Featured
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
170
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
31
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.8k
Tell your own story through comics
letsgokoyo
0
760
Being A Developer After 40
akosma
91
590k
Transcript
守りたいデータがある メルペイ クレジットスコア これから 話 2018/09/05 merpay×M3 機械学習 NIGHT
自己紹介 @Hmj_kd メルペイ Machine Learning Engineer 北海道釧路市出身 釧路高専 情報工学科卒業後,東京 大学へ編集入学.
理学部物理学科 Black Hole 境界上 微分幾何や Inflation 宇宙論あたりを勉強し いました. そ 後,諸般 事情 ,プログラマ,データ分析屋,機械学習 エンジニア等を経 ,現在 至る. 現在 仕事 ,飲み会幹事以外 Project内 タスク全 .
以前,こういった話をし おりました
今日 こん こ を話します ➔ クレジットスコアリングモデル 一般論(再掲) ➔ メルカリ ういったデータを分析
利用 きるか ? ➔ メルペイ クレジットスコア これから つい
クレジットスコアリングモデル 一般論
クレジットスコアリングモデル 一般論 • そもそもクレジット(= 信用) ? 問題設定が難しい • 純粋 classificationだけ
く,与信付与等 意思決定や損失額等 シ ミュレーションもある • Imbalanced Data • 個人情報や機微情報等 高い情報管理
そもそもクレジット(= 信用) ? 一般的 , ”企業 融資”,”後払い サービス” 債務不履行リスク 評価,等
“貸し出 しリスク” をクレジット 扱っ いる. 一方,中国 “Zhima信用” ,シェアバイク 利用状況や,ソーシャルネット ワーク つ がり, 必ずしもお金だけ 紐付いた信用だけ い.
Imbalanced や シミュレーション等 問題性質 • 後払い 着目する ,顧客側 支払い義務が守られず ,支払いが滞る率
が高すぎる そもそも後払い いうサービス運営が き い ◦ → 一般的 未払い者数 << 支払い者数 あり,Imbalanced る • (下図:例,スコア 融資限度額 関係図) ◦ 貸し出し リスク 分類問題だけ く,貸す場合 ▪ くらい 限度額を設定するか ? ▪ それ より債務不履行 る確率的 期待値 ?
個人情報や機微情報等 高い情報管理 こちら 後述いたします.
メルカリ ういったデータを分析 利用 きるか ?
メルカリ データ • 出品データ ◦ 商品画像 ◦ 商品名 ◦ 商品説明
◦ 商品状態 ◦ 商品価格 ◦ カテゴリ ◦ ブランド ◦ サイズ ◦ 配送方法 • サポートコミュニティ ◦ Q&Aデータ • お客さま 行動データ ◦ 商品検索 ◦ 商品タップ ◦ 商品へ 「いい 」 ◦ 商品へ コメント ◦ 価格交渉 ◦ 商品購入 ◦ 商品出品 ◦ 取引メッセージ ◦ 問い合わせ ◦ 商品通報 • ライブフリマ ◦ 動画データ 画像 / 動画 / テキスト / 行動ログ ,多岐 わたる大量 データ
これから
検討したい 思っ いるこ 1. データ解析 プライバシー保護技術を取り入れる a. 悪意をもっ 情報を抜き取 ろう
する人(攻撃者)から,大切 情報をまもる b. モデリング中 人為的 ミスを防ぐため も 2. スコア 特徴量 設計次第 ,(スコアが表示された世界 )利用される方た ち 行動が変わる可能性がある a. (状態, 行動, 報酬)等を考慮 きそう ,強化学習 が想像しやすい b. そもそも 議論もし いく必要 ある
プライバシー保護技術 ... - プライバシー - 個人情報,要配慮情報, ... - プライバシ保護技術 -
データ解析 おけるプライバシー 保護 - よう 定義される か - よう すれ 保護しつつデータ解析が きるか - いった問題を統計学,データ工学,暗号理論 観点
事例や用語 紹介 • Netflix 事例 ◦ Kaggle コンペティション 公開されたデータ(映画 レイティング)
,個人 特定を防ぐ処理 が施され いた. ◦ 一方 ,特定 背景情報をもつ ら 一意 特定 きる条件が統計的 導かれ,個人 特定 が高い確率 可能 ある 主張された. • k-匿名性 ◦ 例) 30代, 男性, 港区 企業 勤め いる , 関東在住, ...
安全性を定量的 議論したい Q. 秘密 入力 x つい f 出力 y
= f(x) を公開した します. 攻撃者が y を得た き ,x が 程度推測されるか , よう 評価すれ よいか ? 引用 : データ解析 おけるプライバシー保護
さいご
チームメンバーを募集し おります ➔ [merpay]ソフトウェアエンジニア(Machine Learning) ➔ [merpay]エンジニアリングマネージャー(Machine Learning) もしご興味ありましたら @Hmj_kd
ま ご連絡ください. 引用 : https://medium.com/moonshot/ataengineers-vs-data-scientist-13fce30812a7
ご清聴ありが うございます !!