Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Google BigQuery の話 #gcpja
Search
Naoya Ito
September 17, 2014
Technology
17
5.7k
Google BigQuery の話 #gcpja
gcp ja night で話した BigQuery のスライド。YAPC::Asia のものに数枚だけスライドを追加したもので、ほぼ同じです。
Naoya Ito
September 17, 2014
Tweet
Share
More Decks by Naoya Ito
See All by Naoya Ito
Functional TypeScript
naoya
15
6k
TypeScript 関数型スタイルでバックエンド開発のリアル
naoya
70
33k
シェルの履歴とイクンリメンタル検索を使う
naoya
8
3.1k
20230227-engineer-type-talk.pdf
naoya
88
74k
関数型プログラミングと型システムのメンタルモデル
naoya
62
100k
TypeScript による GraphQL バックエンド開発
naoya
28
34k
フロントエンドのパラダイムを参考にバックエンド開発を再考する / TypeScript による GraphQL バックエンド開発
naoya
67
24k
「問題から目を背けず取り組む」 一休の開発チームが6年間で学んだこと
naoya
144
59k
一休の現在と、ここまでの道のり
naoya
90
41k
Other Decks in Technology
See All in Technology
Software Architecture in an AI-Driven World
atty303
49
20k
20 Years of Domain-Driven Design: What I’ve Learned About DDD
ewolff
1
390
AIフレンドリーなプロダクト開発を目指して 〜MCPを橋渡しにした環境移行〜
shinpr
0
120
水耕栽培に全部賭けろ
mutsumix
0
140
試作とデモンストレーション / Prototyping and Demonstrations
ks91
PRO
0
150
AOAI で AI アプリを開発する時にまず考えたいこと
mappie_kochi
1
770
LLM アプリケーションのためのクラウドセキュリティ - CSPM の実装ポイント-
osakatechlab
0
460
Software Delivery Observability CI・CD , DORA metrics も Datadog で可視化しよう / datadog-ci-cd-observability
parupappa2929
0
140
インフラからSREへ
mirakui
20
7.4k
使えるデータ基盤を作る技術選定の秘訣 / selecting-the-right-data-technology
pei0804
10
1.6k
SRE本出版からまもなく10年!〜これまでに何が起こり、これから何が起こるのか〜
katsuhisa91
PRO
0
350
Sleep-time Compute: LLM推論コスト削減のための事前推論
sergicalsix
1
150
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
336
57k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.8k
Docker and Python
trallard
44
3.4k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
[RailsConf 2023] Rails as a piece of cake
palkan
54
5.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
13
850
Done Done
chrislema
184
16k
Faster Mobile Websites
deanohume
307
31k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
5
620
Automating Front-end Workflow
addyosmani
1370
200k
Transcript
(PPHMF#JH2VFSZͷ /BPZB*UP ,"*;&/QMBUGPSN*OD HDQKBOJHIU
ΞδΣϯμ • #JH2VFSZ֓؍ • #JH2VFSZͷ෦ • ,"*;&/QMBUGPSN*ODͰͷ͍Ͳ͜Ζ
#JH2VFSZ֓؍
(PPHMF#JH2VFSZ
None
#JH2VFSZͱ • ڊେͳσʔλͷ42- ͳͲ ΛඵͰ࣮ߦ͢ΔΫϥυαʔϏε – ԯϨίʔυΛඵ ˞ –
8FCΠϯλʔϑΣʔε͓Αͼ3&45"1* • (PPHMFࣾͰΘΕ͖ͯͨ%SFNFMΛαʔϏεԽ – ݄$MPTFEϦϦʔε – ݄Ұൠެ։ – ܧଓతʹόʔδϣϯΞοϓ – ݄#JH2VFSZ4USFBNJOH ˞(PPHMFͷދͷࢠʮ#JH2VFSZʯΛ'MVFOUEϢʔβʔ͕Θͳ͍ཧ༝͕ͳ͘ͳͬͨཧ༝ IUUQRJJUBDPNLB[VOPSJJUFNTBDBDCCBBBG
ͲΜͳ͜ͱʹΘΕΔ͔ • Ϣʔεέʔε – ϩάղੳ – %BUBXBSF)PVTF – • ͍ͯͳ͍༻్ – ۀ%# ͍3%#.4Ͱ
ͳ͍Αɺͱ͍͏͜ͱ
#JH2VFSZͳ͍͔ͥ • جຊɺϑϧεΩϟϯͰ͕ΜΔ – 3%#.4ͷ#5SFFΠϯσοΫεͱ͔ͳ͍ • 42-Λࢄॲཧ – .11 .BTTJWFMZ1BSBMMFM1SPDFTTJOH
2VFSZ&OHJOF %SFNFM • ઍͷσΟεΫͱߴωοτϫʔΫͰεέʔϧΞτ – 5#ͷσʔλΛඵͰϦʔυ͢Δ*0
ͨͩ͠ • ͍3%#.4Ͱͳ͍ • େਓͰҰʹ͏ͷͰͳ͍ – ओʹόονॲཧʹ͏ • εΩʔϚϨεͰͳ͍ 5#نσʔλͰઢܗҎ ԼͰεέʔϧ͢Δ͕ɺٯ
ʹখ͞ͳσʔλͰඵ ͷΦʔόʔϔου͕͋Δ ͷͰ
BigQuery読書会、@harukasan 資料より引用
ଞͷྨࣅ࣮ͱͷϙδγϣχϯά • -BSHF#BUDI – ҆ఆͯ͠ڊେͳόονΛ࣮ߦͰ͖Δ – ΫΤϦ࣮ߦ࣌ͷΦʔόʔϔου͕େ͖͍ ेඵʙे –
.BQ3FEVDFɺ)BEPPQ )JWF • 4IPSU#BUDI – ΫΤϦ࣮ߦ࣌ͷΦʔόʔϔου͕NTʙඵ – ΞυϗοΫΫΤϦʹ͍͍ͯΔ – .112VFSZ&OHJOF1SFTUPɺ*NQBMBɺ#JH2VFSZ %SFNFM • 4USFBN1SPDFTTJOH – όον࣮ߦͰ͖ͳ͍͕ετϦʔϜʹରͯ͠ϦΞϧλΠϜॲཧͰ͖Δ – /PSJLSBɺ"QBDIF,BGLBɺ5XJUUFS4UPSNFUD "NB[PO3FETIJGU 4IPSU#BUDI ৄ͘͠ ͳ͍ͷͰলུ cf. Batch processing and Stream processing by SQL h;p://www.slideshare.net/tagomoris/hcj2014-‐sql
Ձ֨ • ྉۚ – σʔλอ(#݄ – ΫΤϦ5# εΩϟϯͨ͠σʔλͷαΠ ζ "NB[PO4ΑΓ࣮
͍҆ νέοτΒ͍·ͨ͠
#JH2VFSZͷ෦ ͚ͩ͢͜͠
(PPHMF#JH%BUB4UBDL • ʰ(PPHMFΛࢧ͑Δٕज़ʱ – #JH%BUB4UBDL – ('4ɺ#JH5BCMFɺ.BQ3FEVDFFUD • #JH%BUB4UBDL –
#JH%BUB4UBDLͷ্ʹߏங͞Εͨɺͷ՝Λղফ͢Δ࣮܈ – $PMPTTVT .FHBTUPSF 4QBOOFS 'MVNF+BWB %SFNFM طʹ(PPHMFࣾ #JH%BUB4UBDLͩ ͱ͔͍͏ͪΒ΄Β
#JH2VFSZͷٕज़ελοΫ (PPHMF'JMF4ZTUFN ('4 $PMPTTVT'JMF4ZTUFN $'4 $PMVNO*0 %SFNFM ࢄ'4
('4ͷվྑܕ'4 ৄࡉඇެ։ #JH2VFSZͷͨΊͷྻࢦϑΝΠϧ ϑΥʔϚοτ ฒྻ42-࣮ߦΤϯδϯ σʔληϯλʔΛ·͍ͨͰ ࢄ͞ΕͯΔσʔλΛฒྻ ͔ͭߴʹऔಘͰ͖ΔΒ͠ ͍
$PMVNO*0 Dremel: InteracIve Analysis of Web-‐Scale Datasets h;p://research.google.com/pubs/archive/36632.pdf ߦͰͳ͘ྻ୯ҐͰɻಛ
ఆྻΛγʔέϯγϟϧʹ ಡΊΔͭ$PMPTTVT ͰฒྻಡΈࠐΈ
%SFNFM Dremel: InteracIve Analysis of Web-‐Scale Datasets h;p://research.google.com/pubs/archive/36632.pdf
Root Mixer Mixer 1 Shard 0-‐8 Mixer 1
Shard 9-‐16 Mixer 1 Shard 17-‐24 Shard 0 Shard 10 Shard 12 Shard 20 Shard 24 Distributed Storage (e.g., CFS) Dremel serving tree Google BigQuery AnalyIcs P.284 Chapter 9 Understanding Query ExecuIon ࢄ
Root Mixer Mixer 1 Shard 0-‐8 Mixer 1
Shard 9-‐16 Mixer 1 Shard 17-‐24 Shard 0 Shard 10 Shard 12 Shard 20 Shard 24 Distributed Storage (e.g., CFS) Dremel serving tree Google BigQuery AnalyIcs P.284 Chapter 9 Understanding Query ExecuIon $'4 $PMVNO*0Ͱಛ ఆྻͷσʔλ͕Ұ෦ฦͬ ͯ͘Δ ࢄ ू
Root Mixer Mixer 1 Shard 0-‐8 Mixer 1
Shard 9-‐16 Mixer 1 Shard 17-‐24 Shard 0 Shard 10 Shard 12 Shard 20 Shard 24 Distributed Storage (e.g., CFS) Dremel serving tree Google BigQuery AnalyIcs P.284 Chapter 9 Understanding Query ExecuIon $'4 $PMVNO*0Ͱಛ ఆྻͷσʔλ͕Ұ෦ฦͬ ͯ͘Δ ྻΛॱ൪ʹಡΈߦ Λऔಘɻ8)&3&۟ͳ ͲΛݟͯඞཁͳߦͷΈ ʹߜΓϝϞϦͰอ࣋ ࢄ ू
Root Mixer Mixer 1 Shard 0-‐8 Mixer 1
Shard 9-‐16 Mixer 1 Shard 17-‐24 Shard 0 Shard 10 Shard 12 Shard 20 Shard 24 Distributed Storage (e.g., CFS) Dremel serving tree Google BigQuery AnalyIcs P.284 Chapter 9 Understanding Query ExecuIon $'4 $PMVNO*0Ͱಛ ఆྻͷσʔλ͕Ұ෦ฦͬ ͯ͘Δ ྻΛॱ൪ʹಡΈߦ Λऔಘɻ8)&3&۟ͳ ͲΛݟͯඞཁͳߦͷΈ ʹߜΓϝϞϦͰอ࣋ ֤TIBSE͔ΒσʔλΛू ɻྫ͑ιʔτ-*.*5 ͷߜΓࠐΈͳͲ͢Δ ࢄ ू
Root Mixer Mixer 1 Shard 0-‐8 Mixer 1
Shard 9-‐16 Mixer 1 Shard 17-‐24 Shard 0 Shard 10 Shard 12 Shard 20 Shard 24 Distributed Storage (e.g., CFS) Dremel serving tree Google BigQuery AnalyIcs P.284 Chapter 9 Understanding Query ExecuIon $'4 $PMVNO*0Ͱಛ ఆྻͷσʔλ͕Ұ෦ฦͬ ͯ͘Δ ྻΛॱ൪ʹಡΈߦ Λऔಘɻ8)&3&۟ͳ ͲΛݟͯඞཁͳߦͷΈ ʹߜΓϝϞϦͰอ࣋ ֤TIBSE͔ΒσʔλΛू ɻྫ͑ιʔτ-*.*5 ͷߜΓࠐΈͳͲ͢Δ ूͨ݁͠Ռ ΛDBMMFSʹฦ͢ ࢄ ू
#JH2VFSZͷ͍͢͝ॴ • ΧϥϜܕ*0ɺ42-ͷׂ౷࣏ – Ͱ͜Εɺ.11తʹ͘͠ͳ͍ • ͡Ό͋ɺ#JH2VFSZͷԿ͕͍͔͢͝ – (PPHMFͷͰ͔͍Πϯϑϥ
ׂͱ֖ͳ͍ŋŋŋ
͜ΜͳΫιΫΤϦͰඵɺ̐ඵͩ
,"*;&/QMBUGPSN*OD Ͱͷ͍Ͳ͜Ζ
Ϣʔεέʔε • ΞΫηεϩάͷอଘௐࠪ • ΞϓϦέʔγϣϯϩάͷղੳ %BUBXBSF )PVTF • "#ςετͷ༗ҙࠩఆ
ΞΫηεϩά
ΞΫηεϩά #JH2VFSZ • /HJOYͷϩάΛqVFOUQMVHJOCJHRVFSZͰ ૹΓଓ͚Δ – &&Ͱ҉߸Խ͞ΕͯΔΑ • Կ͔༻͕͋ͬͨΒ42-Ͱղੳ –
%BJMZ8FFLMZ.POUIMZ17 – ϓϩμΫγϣϯͷσόοά
qVFOUQMVHJOCJHRVFSZ • CZUBHPNPSJT͞ΜɺZVHVJ͞Μଞ • ઌ͔Β,"*;&/QMBUGPSN*OD͕ϝ ϯςφʹ – ࣮࣭ɺԶ QBUDIFTXFMDPNF Ͱ͢
ΞϓϦέʔγϣϯͷϩάղੳ
ϩάΛඈ͢ • 3BJMT͔ΒUEMPHHFSSVCZͰqVFOUE • qVFOUEQMVHJOCJHRVFSZͰ#2ʹඈ͢
ϩάΛඈ͢ܖػ • ϦΫΤετຖ – "QQMJDBUJPO$POUSPMMFS – ϩάΠϯϢʔβͷଐੑΛඈ͢ˠ%"6."6ͷ ࢉग़ʹ • Ϟσϧͷঢ়ଶมߋ࣌
– "DUJWF3FDPSE0CTFSWFS – ϞσϧຖʹదͳଐੑΛݟસͬͯඈ͢ – #JH2VFSZෳࡶͳ42-Ͱී௨ʹԠ͢Δ㱺ϓ ϩμΫτϚωʔδϟ͕ؾܰʹ42-ॻ͍ͯΔ
ਖ਼نԽ͋·Γ͠ͳ͍ • ελʔεΩʔϚ – %8)ͷఆ൪ͷϞσϦϯά • ϑΝΫτςʔϒϧŋŋŋϩά • ࣍ݩςʔϒϧŋŋŋϚελʔσʔλ ސ٬໊ͱ͔
– ਖ਼نԽ͠ͳ͍ͷ͕ηΦϦʔ
"#ςετ༗ҙࠩఆ • "#ςετͷαʔϏεͳͷͰ͆ • ৄࡉൿີ • SFRTFDͱ͔qVUFOEͰૹͬͯΔ ͚ͲͬͪΌΒ͞ – ˞SFRTFDͷ)551SFRVFTUqVFOUE͕όοϑΝϦϯά͢ΔͷͰ
#JH2VFSZͷ"1*ίʔϧͣͬͱগͳ͍
֎෦πʔϧͱͷଓ • ΤΫηϧ – #JH2VFSZ$POOFDUPSGPS&YDFMCZ(PPHMF – ϐϘοτੳʹ • %0.0 #*
– FYQFSJNFOUBMͳ#JH2VFSZΠϯλϑΣʔε ͋ͬͨ – 5BCMFBVϝδϟʔͲ͜ΖରԠ࢝͠ΊͯΔ
໘ͳͱ͜Ζ • qVFOUEQMVHJOCJHRVFSZ͕εΩʔϚϑΝΠϧΛཁٻ ͢Δ – ͕͔ͩ͠͠IBLPCFSB͞Μ͕QBUDIΛॻ͍ͯ͘Εͨ – W͔ΒGFUDI@TDIFNBػೳ͕͑ΔΑ • ࣍ݩςʔϒϧͷߋ৽
– 61%"5&Ͱ͖ͳ͍ͷͰ – ؒͱ͔ʹҰճফͯ͠࡞ΔɺΈ͍ͨͳ – 1SFTUPΈ͍ͨʹҧ͏σʔλιʔεΛ+0*/Ͱ͖ͨΓ͢Δͱخ ͍͠ͷ͕ͩŋŋŋ
࢛ํࢁͦͷ • 42-ͱ͍ͬͯඪ४42-͡Όͳ͍Α – 3&(&91@."5$) ͱ͔3&(&91@&953"$5 ͱ͔+40/ ͱ ͔501 ͱ͔
• ʮͲ͏ͤϑϧεΩϟϯͯ͠Δ͠ʯͱ͍͏લఏʹཱͭͱΑ ͍ – -&'5 '03."5@65$@64&$ UJNF BTEBZ (3061#:EBZͱ͔ – 3&(&91@&953"$5 UJUMF S aX BTGSBHNFOU(3061#: GSBHNFOU03%&3#:GSBHNFOU@DPVOUEFTDͱ͔ – αϒΫΤϦ7JFX
࢛ํࢁͦͷ • 61%"5&%&-&5&ͳ͍ – ཁΒͳ͍ΧϥϜʹOVMM • ΧϥϜܕ͔ͩΒOVMMͳΒ༰ྔ৯Θͳ͍ – εΩʔϚՃ؆୯ • ߋ৽جຊআͯ͠࡞Γ͠
࢛ํࢁͦͷ • (PPHMF"OBMZUJDT #JH2VFSZศརͦ͏ – ("ͷੜϩάΛ#JH2VFSZͰղੳͰ͖ΔΦϓγϣϯ – ͨͩ͠("ͷ༗ྉαʔϏε • Ͱ͔͍σʔλͷΠϯϙʔτ
– (PPHMF%BUB4UPSFʹஔ͍͔ͯΒΠϯϙʔτ͢Δͱߴ • 5BCMF%FDPSBUPST – σʔλͷ࣌ؒൣғΛࢦఆͯ͠ΫΤϦɻεΩϟϯରͷσʔλ͕খ͘͞ͳ ΔͷͰΫΤϦඅ༻ΛઅͰ͖Δ • +0*/੍ݶ.#ੲͷ – +0*/&"$)Λ͏ͱ.BQ3FEVDFͷTIV⒐FΈ͍ͨͳॲཧͰڊ େͳ+0*/ ԯYԯͱ͔ŋŋŋ ͯ͘͠ΕΔΑ
·ͱΊ • #JH2VFSZϑϧεΩϟϯͰͰ͔͍σʔλͷ 42-͕ඵͳαʔϏε • ΫιΫΤϦྗۀͰॲཧͪ͠Ό͏ΧοίΠΠ • ׂ౷࣏ (PPHMFͷ%$نͰ֖ͳ͍ ฒྻॲཧܥ
• όονɺϩάղੳͳΜ͔ʹ͑·͢ • ࢲ(PPHMFࣾͷճ͠ऀͰ͍͟͝·ͤΜ
5IBOLT ֆCZ͋ΘΏ͖