Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoreMLではじめる機械学習
Search
naru-jpn
June 21, 2017
Technology
0
1.1k
CoreMLではじめる機械学習
Neural Networks on Keras ( TensorFlow backends )
naru-jpn
June 21, 2017
Tweet
Share
More Decks by naru-jpn
See All by naru-jpn
配信アプリのためのリアルタイムプッシュ通知ぼかしの夢
narujpn
3
760
PiPを応用した配信コメントバー機能の開発秘話と技術の詳解 / pip_streaming_comment_bar
narujpn
3
3.6k
Updating an App to Use Swift Concurrency 解説
narujpn
2
250
PiP で実現するミラティブの配信コメントバー / pip-streaming-comment-bar
narujpn
0
980
App Extension のスタックトレース情報からクラッシュを解析/集計する / Analyzing app extension's stack trace
narujpn
3
1.3k
ミラティブとWebRTC - WebRTC framework の中身を覗いてみよう / WebRTC framework AudioUnit Processing
narujpn
1
2k
CoreML3のオンデバイストレーニングでつくる母音推定
narujpn
0
390
AltConfと周辺の歩き方
narujpn
0
1.9k
エンジニア経験を活かしたスクラムマスターとして 開発チームとプロダクトを成長させる
narujpn
1
370
Other Decks in Technology
See All in Technology
B2B SaaSから見た最近のC#/.NETの進化
sansantech
PRO
0
860
サイバーセキュリティと認知バイアス:対策の隙を埋める心理学的アプローチ
shumei_ito
0
390
Can We Measure Developer Productivity?
ewolff
1
150
BLADE: An Attempt to Automate Penetration Testing Using Autonomous AI Agents
bbrbbq
0
320
Security-JAWS【第35回】勉強会クラウドにおけるマルウェアやコンテンツ改ざんへの対策
4su_para
0
180
Application Development WG Intro at AppDeveloperCon
salaboy
0
190
Amazon Personalizeのレコメンドシステム構築、実際何するの?〜大体10分で具体的なイメージをつかむ〜
kniino
1
100
OCI Vault 概要
oracle4engineer
PRO
0
9.7k
プロダクト活用度で見えた真実 ホリゾンタルSaaSでの顧客解像度の高め方
tadaken3
0
140
DynamoDB でスロットリングが発生したとき/when_throttling_occurs_in_dynamodb_short
emiki
0
250
Taming you application's environments
salaboy
0
190
100 名超が参加した日経グループ横断の競技型 AWS 学習イベント「Nikkei Group AWS GameDay」の紹介/mediajaws202411
nikkei_engineer_recruiting
1
170
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Why Our Code Smells
bkeepers
PRO
334
57k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
KATA
mclloyd
29
14k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Facilitating Awesome Meetings
lara
50
6.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
97
A designer walks into a library…
pauljervisheath
204
24k
Scaling GitHub
holman
458
140k
Transcript
CoreMLͰ͡ΊΔػցֶश Neural Networks on Keras ( TensorFlow backends ) Timers
inc. / Github: naru-jpn / Twitter: @naruchigi
CoreMLͰ͡ΊΔػցֶश Timers inc. / Github: naru-jpn / Twitter: @naruchigi Neural
Networks on Keras ( TensorFlow backends )
What is Neural Networks?
One of machine learning models. - Neural networks - Tree
ensembles - Support vector machines - Generalized linear models - … https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
What is Keras?
Theano TensorFlow Keras Keras is a high-level neural networks API,
written in Python and capable of running on top of either TensorFlow, CNTK or Theano. https://keras.io
What is CoreML?
Accelerate and BNNS Metal Performance Shaders CoreML BNNS : Basic
Neural Network Subroutines https://developer.apple.com/documentation/coreml With Core ML, you can integrate trained machine learning models into your app. Core ML requires the Core ML model format.
CoreML Trained Model Application Keras Train coremltools
What is coremltools?
Convert existing models to .mlmodel format from popular machine learning
tools including Keras, Caffe, scikit-learn, libsvm, and XGBoost. https://pypi.python.org/pypi/coremltools coremltools
CoreML Trained Model Application Keras Train coremltools
(Demo App)
Environment - Tensorflow 1.1.0 (virtualenv) - Keras 1.2.2 - coremltools
0.3.0 - Xcode 9.0 beta ※ Tensorflow, Keras coremltools ͷରԠόʔδϣϯͰ͋Δඞཁ͕͋ΔͷͰগ͠ݹ͍Ͱ͢ɻ
Programs to train neural networks - mnist_mlp.py - mnist_cnn.py ※
Keras ͷ࠷৽όʔδϣϯͷϦϯΫʹͳ͍ͬͯ·͕͢ɺ࣮ࡍόʔδϣϯ 1.2.2 Λࢀর͠·͢ɻ https://github.com/fchollet/keras/tree/master/examples
Convert model with coremltools 1. Import coremltools import coremltools model
= Sequential() … coreml_model = coremltools.converters.keras.convert(model) coreml_model.save("keras_mnist_mlp.mlmodel") 2. Convert model
Import model into Xcode project // 入力データ class keras_mnist_mlpInput :
MLFeatureProvider { var input1: MLMultiArray // … } // 出力データ class keras_mnist_mlpOutput : MLFeatureProvider { var output1: MLMultiArray // … } // モデル @objc class keras_mnist_mlp:NSObject { var model: MLModel init(contentsOf url: URL) throws { self.model = try MLModel(contentsOf: url) } // … func prediction(input: keras_mnist_mlpInput) throws -> keras_mnist_mlpOutput { // … keras_mnist_mlp.mlmodel Λѻ͏ҝͷίʔυ͕ࣗಈੜ͞ΕΔ
Prepare model and input in code // モデルの作成 let model
= keras_mnist_mlp() // 入力データの格納用変数 (入力は28*28の画像) let input = keras_mnist_mlpInput( input1: try! MLMultiArray(shape: [784], dataType: .double) )
Modify input value // 入力データの 0 番目の要素に 1.0 を代入 input.input1[0]
= NSNumber(value: 1.0)
Make a prediction // モデルに入力データを渡して計算 let output = try model.prediction(
input: self.input )
CoreML Trained Model Application Keras Train coremltools Recap
Demo App on Github https://github.com/naru-jpn/MLModelSample
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠