Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoreMLではじめる機械学習
Search
naru-jpn
June 21, 2017
Technology
0
1.2k
CoreMLではじめる機械学習
Neural Networks on Keras ( TensorFlow backends )
naru-jpn
June 21, 2017
Tweet
Share
More Decks by naru-jpn
See All by naru-jpn
配信アプリのためのリアルタイムプッシュ通知ぼかしの夢
narujpn
3
900
PiPを応用した配信コメントバー機能の開発秘話と技術の詳解 / pip_streaming_comment_bar
narujpn
3
4.2k
Updating an App to Use Swift Concurrency 解説
narujpn
2
340
PiP で実現するミラティブの配信コメントバー / pip-streaming-comment-bar
narujpn
0
1.2k
App Extension のスタックトレース情報からクラッシュを解析/集計する / Analyzing app extension's stack trace
narujpn
3
1.5k
ミラティブとWebRTC - WebRTC framework の中身を覗いてみよう / WebRTC framework AudioUnit Processing
narujpn
1
2.2k
CoreML3のオンデバイストレーニングでつくる母音推定
narujpn
0
440
AltConfと周辺の歩き方
narujpn
0
2k
エンジニア経験を活かしたスクラムマスターとして 開発チームとプロダクトを成長させる
narujpn
1
410
Other Decks in Technology
See All in Technology
AWS Summit Japan 2025 Community Stage - App workflow automation by AWS Step Functions
matsuihidetoshi
1
310
Claude Code Actionを使ったコード品質改善の取り組み
potix2
PRO
6
2.6k
OPENLOGI Company Profile
hr01
0
67k
250627 関西Ruby会議08 前夜祭 RejectKaigi「DJ on Ruby Ver.0.1」
msykd
PRO
2
370
Amazon Bedrockで実現する 新たな学習体験
kzkmaeda
2
680
解析の定理証明実践@Lean 4
dec9ue
1
200
20250625 Snowflake Summit 2025活用事例 レポート / Nowcast Snowflake Summit 2025 Case Study Report
kkuv
1
370
ネットワーク保護はどう変わるのか?re:Inforce 2025最新アップデート解説
tokushun
0
150
モバイル界のMCPを考える
naoto33
0
350
強化されたAmazon Location Serviceによる新機能と開発者体験
dayjournal
3
250
KubeCon + CloudNativeCon Japan 2025 に行ってきた! & containerd の新機能紹介
honahuku
0
120
変化する開発、進化する体系時代に適応するソフトウェアエンジニアの知識と考え方(JaSST'25 Kansai)
mizunori
1
260
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
53
7.7k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.8k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
The World Runs on Bad Software
bkeepers
PRO
69
11k
The Invisible Side of Design
smashingmag
300
51k
Navigating Team Friction
lara
187
15k
Done Done
chrislema
184
16k
VelocityConf: Rendering Performance Case Studies
addyosmani
331
24k
Unsuck your backbone
ammeep
671
58k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
Transcript
CoreMLͰ͡ΊΔػցֶश Neural Networks on Keras ( TensorFlow backends ) Timers
inc. / Github: naru-jpn / Twitter: @naruchigi
CoreMLͰ͡ΊΔػցֶश Timers inc. / Github: naru-jpn / Twitter: @naruchigi Neural
Networks on Keras ( TensorFlow backends )
What is Neural Networks?
One of machine learning models. - Neural networks - Tree
ensembles - Support vector machines - Generalized linear models - … https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
What is Keras?
Theano TensorFlow Keras Keras is a high-level neural networks API,
written in Python and capable of running on top of either TensorFlow, CNTK or Theano. https://keras.io
What is CoreML?
Accelerate and BNNS Metal Performance Shaders CoreML BNNS : Basic
Neural Network Subroutines https://developer.apple.com/documentation/coreml With Core ML, you can integrate trained machine learning models into your app. Core ML requires the Core ML model format.
CoreML Trained Model Application Keras Train coremltools
What is coremltools?
Convert existing models to .mlmodel format from popular machine learning
tools including Keras, Caffe, scikit-learn, libsvm, and XGBoost. https://pypi.python.org/pypi/coremltools coremltools
CoreML Trained Model Application Keras Train coremltools
(Demo App)
Environment - Tensorflow 1.1.0 (virtualenv) - Keras 1.2.2 - coremltools
0.3.0 - Xcode 9.0 beta ※ Tensorflow, Keras coremltools ͷରԠόʔδϣϯͰ͋Δඞཁ͕͋ΔͷͰগ͠ݹ͍Ͱ͢ɻ
Programs to train neural networks - mnist_mlp.py - mnist_cnn.py ※
Keras ͷ࠷৽όʔδϣϯͷϦϯΫʹͳ͍ͬͯ·͕͢ɺ࣮ࡍόʔδϣϯ 1.2.2 Λࢀর͠·͢ɻ https://github.com/fchollet/keras/tree/master/examples
Convert model with coremltools 1. Import coremltools import coremltools model
= Sequential() … coreml_model = coremltools.converters.keras.convert(model) coreml_model.save("keras_mnist_mlp.mlmodel") 2. Convert model
Import model into Xcode project // 入力データ class keras_mnist_mlpInput :
MLFeatureProvider { var input1: MLMultiArray // … } // 出力データ class keras_mnist_mlpOutput : MLFeatureProvider { var output1: MLMultiArray // … } // モデル @objc class keras_mnist_mlp:NSObject { var model: MLModel init(contentsOf url: URL) throws { self.model = try MLModel(contentsOf: url) } // … func prediction(input: keras_mnist_mlpInput) throws -> keras_mnist_mlpOutput { // … keras_mnist_mlp.mlmodel Λѻ͏ҝͷίʔυ͕ࣗಈੜ͞ΕΔ
Prepare model and input in code // モデルの作成 let model
= keras_mnist_mlp() // 入力データの格納用変数 (入力は28*28の画像) let input = keras_mnist_mlpInput( input1: try! MLMultiArray(shape: [784], dataType: .double) )
Modify input value // 入力データの 0 番目の要素に 1.0 を代入 input.input1[0]
= NSNumber(value: 1.0)
Make a prediction // モデルに入力データを渡して計算 let output = try model.prediction(
input: self.input )
CoreML Trained Model Application Keras Train coremltools Recap
Demo App on Github https://github.com/naru-jpn/MLModelSample
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠