Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoreMLではじめる機械学習
Search
naru-jpn
June 21, 2017
Technology
0
1.2k
CoreMLではじめる機械学習
Neural Networks on Keras ( TensorFlow backends )
naru-jpn
June 21, 2017
Tweet
Share
More Decks by naru-jpn
See All by naru-jpn
配信アプリのためのリアルタイムプッシュ通知ぼかしの夢
narujpn
3
920
PiPを応用した配信コメントバー機能の開発秘話と技術の詳解 / pip_streaming_comment_bar
narujpn
3
4.3k
Updating an App to Use Swift Concurrency 解説
narujpn
2
350
PiP で実現するミラティブの配信コメントバー / pip-streaming-comment-bar
narujpn
0
1.2k
App Extension のスタックトレース情報からクラッシュを解析/集計する / Analyzing app extension's stack trace
narujpn
3
1.5k
ミラティブとWebRTC - WebRTC framework の中身を覗いてみよう / WebRTC framework AudioUnit Processing
narujpn
1
2.2k
CoreML3のオンデバイストレーニングでつくる母音推定
narujpn
0
450
AltConfと周辺の歩き方
narujpn
0
2k
エンジニア経験を活かしたスクラムマスターとして 開発チームとプロダクトを成長させる
narujpn
1
420
Other Decks in Technology
See All in Technology
つくって納得、つかって実感! 大規模言語モデルことはじめ
recruitengineers
PRO
25
6.8k
現場が抱える様々な問題は “組織設計上” の問題によって生じていることがある / Team-oriented Organization Design 20250827
mtx2s
6
1.5k
浸透しなさいRFC 5322&7208
hinono
0
120
ドキュメントはAIの味方!スタートアップのアジャイルを加速するADR
kawauso
3
410
モダンな現場と従来型の組織——そこに生じる "不整合" を解消してこそチームがパフォーマンスを発揮できる / Team-oriented Organization Design 20250825
mtx2s
6
650
株式会社ARAV 採用案内
maqui
0
360
『FailNet~やらかし共有SNS~』エレベーターピッチ
yokomachi
1
110
Figma + Storybook + PlaywrightのMCPを使ったフロントエンド開発
yug1224
10
2.9k
第4回 関東Kaggler会 [Training LLMs with Limited VRAM]
tascj
12
1.9k
Browser
recruitengineers
PRO
5
720
LLMエージェント時代に適応した開発フロー
hiragram
1
420
.NET開発者のためのAzureの概要
tomokusaba
0
230
Featured
See All Featured
Fireside Chat
paigeccino
39
3.6k
A better future with KSS
kneath
239
17k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
Site-Speed That Sticks
csswizardry
10
790
Six Lessons from altMBA
skipperchong
28
4k
The Cult of Friendly URLs
andyhume
79
6.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
Transcript
CoreMLͰ͡ΊΔػցֶश Neural Networks on Keras ( TensorFlow backends ) Timers
inc. / Github: naru-jpn / Twitter: @naruchigi
CoreMLͰ͡ΊΔػցֶश Timers inc. / Github: naru-jpn / Twitter: @naruchigi Neural
Networks on Keras ( TensorFlow backends )
What is Neural Networks?
One of machine learning models. - Neural networks - Tree
ensembles - Support vector machines - Generalized linear models - … https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
What is Keras?
Theano TensorFlow Keras Keras is a high-level neural networks API,
written in Python and capable of running on top of either TensorFlow, CNTK or Theano. https://keras.io
What is CoreML?
Accelerate and BNNS Metal Performance Shaders CoreML BNNS : Basic
Neural Network Subroutines https://developer.apple.com/documentation/coreml With Core ML, you can integrate trained machine learning models into your app. Core ML requires the Core ML model format.
CoreML Trained Model Application Keras Train coremltools
What is coremltools?
Convert existing models to .mlmodel format from popular machine learning
tools including Keras, Caffe, scikit-learn, libsvm, and XGBoost. https://pypi.python.org/pypi/coremltools coremltools
CoreML Trained Model Application Keras Train coremltools
(Demo App)
Environment - Tensorflow 1.1.0 (virtualenv) - Keras 1.2.2 - coremltools
0.3.0 - Xcode 9.0 beta ※ Tensorflow, Keras coremltools ͷରԠόʔδϣϯͰ͋Δඞཁ͕͋ΔͷͰগ͠ݹ͍Ͱ͢ɻ
Programs to train neural networks - mnist_mlp.py - mnist_cnn.py ※
Keras ͷ࠷৽όʔδϣϯͷϦϯΫʹͳ͍ͬͯ·͕͢ɺ࣮ࡍόʔδϣϯ 1.2.2 Λࢀর͠·͢ɻ https://github.com/fchollet/keras/tree/master/examples
Convert model with coremltools 1. Import coremltools import coremltools model
= Sequential() … coreml_model = coremltools.converters.keras.convert(model) coreml_model.save("keras_mnist_mlp.mlmodel") 2. Convert model
Import model into Xcode project // 入力データ class keras_mnist_mlpInput :
MLFeatureProvider { var input1: MLMultiArray // … } // 出力データ class keras_mnist_mlpOutput : MLFeatureProvider { var output1: MLMultiArray // … } // モデル @objc class keras_mnist_mlp:NSObject { var model: MLModel init(contentsOf url: URL) throws { self.model = try MLModel(contentsOf: url) } // … func prediction(input: keras_mnist_mlpInput) throws -> keras_mnist_mlpOutput { // … keras_mnist_mlp.mlmodel Λѻ͏ҝͷίʔυ͕ࣗಈੜ͞ΕΔ
Prepare model and input in code // モデルの作成 let model
= keras_mnist_mlp() // 入力データの格納用変数 (入力は28*28の画像) let input = keras_mnist_mlpInput( input1: try! MLMultiArray(shape: [784], dataType: .double) )
Modify input value // 入力データの 0 番目の要素に 1.0 を代入 input.input1[0]
= NSNumber(value: 1.0)
Make a prediction // モデルに入力データを渡して計算 let output = try model.prediction(
input: self.input )
CoreML Trained Model Application Keras Train coremltools Recap
Demo App on Github https://github.com/naru-jpn/MLModelSample
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠