Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoreMLではじめる機械学習
Search
naru-jpn
June 21, 2017
Technology
0
1.2k
CoreMLではじめる機械学習
Neural Networks on Keras ( TensorFlow backends )
naru-jpn
June 21, 2017
Tweet
Share
More Decks by naru-jpn
See All by naru-jpn
配信アプリのためのリアルタイムプッシュ通知ぼかしの夢
narujpn
3
880
PiPを応用した配信コメントバー機能の開発秘話と技術の詳解 / pip_streaming_comment_bar
narujpn
3
4.1k
Updating an App to Use Swift Concurrency 解説
narujpn
2
330
PiP で実現するミラティブの配信コメントバー / pip-streaming-comment-bar
narujpn
0
1.1k
App Extension のスタックトレース情報からクラッシュを解析/集計する / Analyzing app extension's stack trace
narujpn
3
1.5k
ミラティブとWebRTC - WebRTC framework の中身を覗いてみよう / WebRTC framework AudioUnit Processing
narujpn
1
2.2k
CoreML3のオンデバイストレーニングでつくる母音推定
narujpn
0
440
AltConfと周辺の歩き方
narujpn
0
2k
エンジニア経験を活かしたスクラムマスターとして 開発チームとプロダクトを成長させる
narujpn
1
410
Other Decks in Technology
See All in Technology
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
17k
Roo CodeとClaude Code比較してみた
pharma_x_tech
1
220
おれのAI活用の現状とこれから
tsukasagr
0
130
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.6k
Text-to-SQLの評価データセットを作って最新LLMモデルの性能評価をしてみた
gotalab555
3
710
New Cache Hierarchy for Container Images and OCI Artifacts in Kubernetes Clusters using Containerd / KubeCon + CloudNativeCon Japan
pfn
PRO
0
130
impressions-trying-lambda-web-adapter
junkishigaki
2
160
dbt Cloudの新機能を紹介!データエンジニアリングの民主化:GUIで操作、SQLで管理する新時代のdbt Cloud
sagara
0
160
今からでも間に合う! 生成AI「RAG」再入門 / Re-introduction to RAG in Generative AI
hideakiaoyagi
1
120
データベースの引越しを Ora2Pg でスマートにやろう
jri_narita
0
190
Long journey of Continuous Delivery at Mercari
hisaharu
0
180
Google I/O 2025 Keynote & Developer Keynote Overview
yanzm
0
110
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1370
200k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Agile that works and the tools we love
rasmusluckow
329
21k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
180
53k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
KATA
mclloyd
29
14k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Side Projects
sachag
454
42k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
Fireside Chat
paigeccino
37
3.5k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Transcript
CoreMLͰ͡ΊΔػցֶश Neural Networks on Keras ( TensorFlow backends ) Timers
inc. / Github: naru-jpn / Twitter: @naruchigi
CoreMLͰ͡ΊΔػցֶश Timers inc. / Github: naru-jpn / Twitter: @naruchigi Neural
Networks on Keras ( TensorFlow backends )
What is Neural Networks?
One of machine learning models. - Neural networks - Tree
ensembles - Support vector machines - Generalized linear models - … https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
What is Keras?
Theano TensorFlow Keras Keras is a high-level neural networks API,
written in Python and capable of running on top of either TensorFlow, CNTK or Theano. https://keras.io
What is CoreML?
Accelerate and BNNS Metal Performance Shaders CoreML BNNS : Basic
Neural Network Subroutines https://developer.apple.com/documentation/coreml With Core ML, you can integrate trained machine learning models into your app. Core ML requires the Core ML model format.
CoreML Trained Model Application Keras Train coremltools
What is coremltools?
Convert existing models to .mlmodel format from popular machine learning
tools including Keras, Caffe, scikit-learn, libsvm, and XGBoost. https://pypi.python.org/pypi/coremltools coremltools
CoreML Trained Model Application Keras Train coremltools
(Demo App)
Environment - Tensorflow 1.1.0 (virtualenv) - Keras 1.2.2 - coremltools
0.3.0 - Xcode 9.0 beta ※ Tensorflow, Keras coremltools ͷରԠόʔδϣϯͰ͋Δඞཁ͕͋ΔͷͰগ͠ݹ͍Ͱ͢ɻ
Programs to train neural networks - mnist_mlp.py - mnist_cnn.py ※
Keras ͷ࠷৽όʔδϣϯͷϦϯΫʹͳ͍ͬͯ·͕͢ɺ࣮ࡍόʔδϣϯ 1.2.2 Λࢀর͠·͢ɻ https://github.com/fchollet/keras/tree/master/examples
Convert model with coremltools 1. Import coremltools import coremltools model
= Sequential() … coreml_model = coremltools.converters.keras.convert(model) coreml_model.save("keras_mnist_mlp.mlmodel") 2. Convert model
Import model into Xcode project // 入力データ class keras_mnist_mlpInput :
MLFeatureProvider { var input1: MLMultiArray // … } // 出力データ class keras_mnist_mlpOutput : MLFeatureProvider { var output1: MLMultiArray // … } // モデル @objc class keras_mnist_mlp:NSObject { var model: MLModel init(contentsOf url: URL) throws { self.model = try MLModel(contentsOf: url) } // … func prediction(input: keras_mnist_mlpInput) throws -> keras_mnist_mlpOutput { // … keras_mnist_mlp.mlmodel Λѻ͏ҝͷίʔυ͕ࣗಈੜ͞ΕΔ
Prepare model and input in code // モデルの作成 let model
= keras_mnist_mlp() // 入力データの格納用変数 (入力は28*28の画像) let input = keras_mnist_mlpInput( input1: try! MLMultiArray(shape: [784], dataType: .double) )
Modify input value // 入力データの 0 番目の要素に 1.0 を代入 input.input1[0]
= NSNumber(value: 1.0)
Make a prediction // モデルに入力データを渡して計算 let output = try model.prediction(
input: self.input )
CoreML Trained Model Application Keras Train coremltools Recap
Demo App on Github https://github.com/naru-jpn/MLModelSample
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠