Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoreMLではじめる機械学習
Search
naru-jpn
June 21, 2017
Technology
0
1.2k
CoreMLではじめる機械学習
Neural Networks on Keras ( TensorFlow backends )
naru-jpn
June 21, 2017
Tweet
Share
More Decks by naru-jpn
See All by naru-jpn
配信アプリのためのリアルタイムプッシュ通知ぼかしの夢
narujpn
3
950
PiPを応用した配信コメントバー機能の開発秘話と技術の詳解 / pip_streaming_comment_bar
narujpn
3
4.4k
Updating an App to Use Swift Concurrency 解説
narujpn
2
350
PiP で実現するミラティブの配信コメントバー / pip-streaming-comment-bar
narujpn
0
1.2k
App Extension のスタックトレース情報からクラッシュを解析/集計する / Analyzing app extension's stack trace
narujpn
3
1.6k
ミラティブとWebRTC - WebRTC framework の中身を覗いてみよう / WebRTC framework AudioUnit Processing
narujpn
1
2.2k
CoreML3のオンデバイストレーニングでつくる母音推定
narujpn
0
450
AltConfと周辺の歩き方
narujpn
0
2k
エンジニア経験を活かしたスクラムマスターとして 開発チームとプロダクトを成長させる
narujpn
1
420
Other Decks in Technology
See All in Technology
今この時代に技術とどう向き合うべきか
gree_tech
PRO
2
2.1k
ローカルLLMとLINE Botの組み合わせ その2(EVO-X2でgpt-oss-120bを利用) / LINE DC Generative AI Meetup #7
you
PRO
0
140
ViteとTypeScriptのProject Referencesで 大規模モノレポのUIカタログのリリースサイクルを高速化する
shuta13
2
110
SCONE - 動画配信の帯域を最適化する新プロトコル
kazuho
1
310
Claude Code Subagents 再入門 ~cc-sddの実装で学んだこと~
gotalab555
10
17k
HonoとJSXを使って管理画面をサクッと型安全に作ろう
diggymo
0
160
React19.2のuseEffectEventを追う
maguroalternative
2
600
だいたい分かった気になる 『SREの知識地図』 / introduction-to-sre-knowledge-map-book
katsuhisa91
PRO
3
1.2k
AI時代におけるデータの重要性 ~データマネジメントの第一歩~
ryoichi_ota
0
710
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
0
230
物体検出モデルでシイタケの収穫時期を自動判定してみた。 #devio2025
lamaglama39
0
270
AI時代の開発を加速する組織づくり - ブログでは書けなかったリアル
hiro8ma
1
250
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Context Engineering - Making Every Token Count
addyosmani
7
290
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Speed Design
sergeychernyshev
32
1.2k
Faster Mobile Websites
deanohume
310
31k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
What's in a price? How to price your products and services
michaelherold
246
12k
The Invisible Side of Design
smashingmag
302
51k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Leading Effective Engineering Teams in the AI Era
addyosmani
7
570
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Transcript
CoreMLͰ͡ΊΔػցֶश Neural Networks on Keras ( TensorFlow backends ) Timers
inc. / Github: naru-jpn / Twitter: @naruchigi
CoreMLͰ͡ΊΔػցֶश Timers inc. / Github: naru-jpn / Twitter: @naruchigi Neural
Networks on Keras ( TensorFlow backends )
What is Neural Networks?
One of machine learning models. - Neural networks - Tree
ensembles - Support vector machines - Generalized linear models - … https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
What is Keras?
Theano TensorFlow Keras Keras is a high-level neural networks API,
written in Python and capable of running on top of either TensorFlow, CNTK or Theano. https://keras.io
What is CoreML?
Accelerate and BNNS Metal Performance Shaders CoreML BNNS : Basic
Neural Network Subroutines https://developer.apple.com/documentation/coreml With Core ML, you can integrate trained machine learning models into your app. Core ML requires the Core ML model format.
CoreML Trained Model Application Keras Train coremltools
What is coremltools?
Convert existing models to .mlmodel format from popular machine learning
tools including Keras, Caffe, scikit-learn, libsvm, and XGBoost. https://pypi.python.org/pypi/coremltools coremltools
CoreML Trained Model Application Keras Train coremltools
(Demo App)
Environment - Tensorflow 1.1.0 (virtualenv) - Keras 1.2.2 - coremltools
0.3.0 - Xcode 9.0 beta ※ Tensorflow, Keras coremltools ͷରԠόʔδϣϯͰ͋Δඞཁ͕͋ΔͷͰগ͠ݹ͍Ͱ͢ɻ
Programs to train neural networks - mnist_mlp.py - mnist_cnn.py ※
Keras ͷ࠷৽όʔδϣϯͷϦϯΫʹͳ͍ͬͯ·͕͢ɺ࣮ࡍόʔδϣϯ 1.2.2 Λࢀর͠·͢ɻ https://github.com/fchollet/keras/tree/master/examples
Convert model with coremltools 1. Import coremltools import coremltools model
= Sequential() … coreml_model = coremltools.converters.keras.convert(model) coreml_model.save("keras_mnist_mlp.mlmodel") 2. Convert model
Import model into Xcode project // 入力データ class keras_mnist_mlpInput :
MLFeatureProvider { var input1: MLMultiArray // … } // 出力データ class keras_mnist_mlpOutput : MLFeatureProvider { var output1: MLMultiArray // … } // モデル @objc class keras_mnist_mlp:NSObject { var model: MLModel init(contentsOf url: URL) throws { self.model = try MLModel(contentsOf: url) } // … func prediction(input: keras_mnist_mlpInput) throws -> keras_mnist_mlpOutput { // … keras_mnist_mlp.mlmodel Λѻ͏ҝͷίʔυ͕ࣗಈੜ͞ΕΔ
Prepare model and input in code // モデルの作成 let model
= keras_mnist_mlp() // 入力データの格納用変数 (入力は28*28の画像) let input = keras_mnist_mlpInput( input1: try! MLMultiArray(shape: [784], dataType: .double) )
Modify input value // 入力データの 0 番目の要素に 1.0 を代入 input.input1[0]
= NSNumber(value: 1.0)
Make a prediction // モデルに入力データを渡して計算 let output = try model.prediction(
input: self.input )
CoreML Trained Model Application Keras Train coremltools Recap
Demo App on Github https://github.com/naru-jpn/MLModelSample
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠