Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
VRPの近傍操作SWAP*について調べてみた
Search
NearMeの技術発表資料です
PRO
July 05, 2024
Technology
1
150
VRPの近傍操作SWAP*について調べてみた
NearMeの技術発表資料です
PRO
July 05, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ESLintをもっと有効活用しよう
nearme_tech
PRO
0
4
リファクタリングのための第一歩
nearme_tech
PRO
0
26
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
70
確率的プログラミング入門
nearme_tech
PRO
2
60
Observability and OpenTelemetry
nearme_tech
PRO
2
34
観察研究における因果推論
nearme_tech
PRO
1
90
React
nearme_tech
PRO
2
40
Architecture Decision Record (ADR)
nearme_tech
PRO
1
850
遺伝的アルゴリズムを実装する
nearme_tech
PRO
1
60
Other Decks in Technology
See All in Technology
スタートアップで取り組んでいるAzureとMicrosoft 365のセキュリティ対策/How to Improve Azure and Microsoft 365 Security at Startup
yuj1osm
0
210
alecthomas/kong はいいぞ / kamakura.go#7
fujiwara3
1
300
10個のフィルタをAXI4-Streamでつなげてみた
marsee101
0
160
MLOps の現場から
asei
6
630
【re:Invent 2024 アプデ】 Prompt Routing の紹介
champ
0
140
1等無人航空機操縦士一発試験 合格までの道のり ドローンミートアップ@大阪 2024/12/18
excdinc
0
150
DevOps視点でAWS re:invent2024の新サービス・アプデを振り返ってみた
oshanqq
0
180
Jetpack Composeで始めるServer Cache State
ogaclejapan
2
160
.NET 9 のパフォーマンス改善
nenonaninu
0
360
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
23
11k
Amazon VPC Lattice 最新アップデート紹介 - PrivateLink も似たようなアップデートあったけど違いとは
bigmuramura
0
190
マイクロサービスにおける容易なトランザクション管理に向けて
scalar
0
110
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
The Invisible Side of Design
smashingmag
298
50k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
48
2.2k
Music & Morning Musume
bryan
46
6.2k
A Modern Web Designer's Workflow
chriscoyier
693
190k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Thoughts on Productivity
jonyablonski
67
4.4k
Building an army of robots
kneath
302
44k
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Rails Girls Zürich Keynote
gr2m
94
13k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Transcript
0 2024-07-05 第97回NearMe技術勉強会 Kenji Hosoda VRPの近傍操作SWAP* について調べてみた
1 SWAP*に興味をもった経緯 • VRPにおける近傍操作のアルゴリズムの⼀つ • いくつかのアクティブなVRPのライブラリで取り⼊れられている ◦ https://github.com/VROOM-Project/vroom ☆1.3k ◦
https://github.com/reinterpretcat/vrp ☆329 ◦ https://github.com/PyVRP/PyVRP ☆229 • ⽐較的最近提案されている ◦ 2020年にarxivで提案 ▪ https://arxiv.org/abs/2012.10384 ◦ 2022年にComputers & Operations Researchに掲載 ▪ https://www.sciencedirect.com/science/article/abs/pii/S030505482100349X • 計算時間が愚直な実装に⽐べて → になる
2 https://developers.google.com/optimization/routing/vrp VRP(Vehicle Routing Problem)ついて ⼀連の場所を訪れる複数の⾞両の最適なルートを⾒つける 車庫 (DEPOT) 車両 1
車両 2 車両 3 車両 4
3 VRPの解き⽅ • 混合整数計画法で解く ◦ 厳密な最適化ができ、解の品質が保証される ◦ 計算時間が⾮常に⻑くなる時がある • メタヒューリスティクスで解く
◦ 厳密な最適解ではないが、実⽤的に良好な解を得られる ◦ 計算時間は⽐較的短く、時間制約を設けて解を得ることも可能 ◦ 問題に応じてアルゴリズムを調整しやすい ◦ シミュレーテッドアニーリング / 遺伝的アルゴリズム など
4 https://www.researchgate.net/publication/363632926_A_reinforcement_learning-Variable_neighborhood_search_method_for_the_capacitated_Vehicle_Routing_Problem VRPの近傍操作について • 近傍操作はメタヒューリスティクスの ⼀部として使⽤される ◦ 近傍操作を繰り返すことで局所解 を探索する •
近傍操作の例 • ルート内 ◦ エッジ繋ぎ変え (2-OPT) ◦ ノード移動 (MOVE) • ルート間 ◦ ノード交換 (SWAP) ◦ ノード移転 (RELOCATE)
5 SWAP操作について A B C D DEPOT E F G
H Route1 Route2 SWAP前の2つのルート
6 SWAP操作について A B C D DEPOT E F G
H Route1 Route2 ルート間でノードを交換する
7 SWAP操作について あるルート間のノードペアにおいては、例えば、 ノードEをRoute1のどこに挿⼊するか、ノードCをRoute2のどこに挿⼊するか、 を洗い出して、その中でベストな挿⼊ポイントを⾒つける A B C D DEPOT
E F G H Route1 Route2 A B C D DEPOT E F G H Route1 Route2 …
8 SWAP操作について • 全体としては、 ◦ ルート間のノードペアがΘ(n^2)通り ◦ あるノードペアにおける挿⼊ポイントがΘ(n^2)通り ◦ で、Θ(n^4)通りの動きがある
• 愚直な実装で、計算時間はΘ(n^3) ◦ (ノードペアにおけるベストな挿⼊ポイントの計算は、 ペアの⽚⽅ずつ独⽴に⾏えるのでΘ(n)の計算時間)
9 SWAP*について 1: EをRoute1に付け加えた時のコストを考える A B C D DEPOT E
F G H C 0E CEA C0A Route1 Route2 上の例のコスト差分は、∆(E, 0, A) = C0E + CEA - C0A となる ※ルートのコストは各エッジのコストの和で決まるものとする
10 SWAP*について 1: EをRoute1に付け加えた時のコストを考える A B C D DEPOT E
F G H CAE CEB CAB Route1 Route2 上の例のコスト差分は、∆(E, A, B) = CAE + CEB - CAB となる
11 SWAP*について A B C D DEPOT E F G
H CBE CEC CBC Route1 Route2 上のコスト差分は、∆(E, B, C) = CBE + CEC - CBC となる 1: EをRoute1に付け加えた時のコストを考える
12 SWAP*について A B C D DEPOT E F G
H CCE CED CCD Route1 Route2 上のコスト差分は、∆(E, C, D) = CCE + CED - CCD となる 1: EをRoute1に付け加えた時のコストを考える
13 SWAP*について 上のコスト差分は、∆(E, C, D) = CDE + CE0 -
CD0 となる 1: EをRoute1に付け加えた時のコストを考える A B C D DEPOT E F G H CDE CD0 Route1 Route2 CE0
14 SWAP*について 上のコスト差分は、 ∆(E, B, D) - ∆(C, B, D)
= (CBE + CED - CBD) - (CBC + CCD - CBD) = CBE + CED - CBC - CCD となる 2: Route1ではCを取り除いて、Cの場所をEで置き換えた場合を考える A B C D DEPOT E F G H CBE CBD Route1 Route2 CED CBC CCD
15 SWAP*について この中から最初コストとなるEの配置を選ぶ ↓Cを取り除く場合はこのパタンはない 1: EをRoute1に付け加える場合 2: Cの場所をEで置き換える場合 ここからCを取り除く (差分コストはさらに∆(C,
B, D)だけ引かれる) こちらは既に Cは取り除かれてる
16 SWAP*について この中から最初コストとなるEの配置を選ぶ 1: EをRoute1に付け加える場合 2: Cの場所をEで置き換える場合 この中から最⼩コストとなるTop3を選ぶ ここからCを取り除く (差分コストはさらに∆(C,
B, D)だけ引かれる) Cを取り除く場合にありえないパタンを除く (Top3の中でありえないパタンは最⼤2個なので、最⼩コストのものは残る) 枠の部分はRoute1で取り除くノードに関わらず 事前に計算して使いまわせる (計算量を”n回分”減らせる)
17 SWAP*のアルゴリズム全体像 ルートペアを選出(計算量削減のため近傍のルートペアに限定) https://arxiv.org/abs/2012.10384 ベストな挿入ポイントの Top3を事前計算 各ルート間のノードペアにおいて 最小コスト差分を計算 ベストなルート間のノードペアを選択 ベストなルート間のノードペアを交換
18 SWAP*の適⽤例 https://arxiv.org/abs/2012.10384 32と46を交換
19 SWAP*のパフォーマンス • 計算時間は最⼤32% → 古典的な⽅法に⽐べ劇的に改善 • 15%ほどの解の改善に貢献 • 解の改善が難しくなる後半の探索ほど解の改善に貢献
https://arxiv.org/abs/2012.10384 これは直感に合う
20 Thank you