Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
VRPの近傍操作SWAP*について調べてみた
Search
NearMeの技術発表資料です
PRO
July 05, 2024
Technology
1
250
VRPの近傍操作SWAP*について調べてみた
NearMeの技術発表資料です
PRO
July 05, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
0
91
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
76
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
6
Apple Containerについて調べて触ってみた
nearme_tech
PRO
0
110
Rust 並列強化学習
nearme_tech
PRO
0
23
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
150
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
39
Hub Labeling による高速経路探索
nearme_tech
PRO
0
100
Build an AI agent with Mastra
nearme_tech
PRO
0
81
Other Decks in Technology
See All in Technology
バッチ処理で悩むバックエンドエンジニアに捧げるAWS Glue入門
diggymo
3
190
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
180
フィンテック養成勉強会#56
finengine
0
140
クラウドセキュリティを支える技術と運用の最前線 / Cutting-edge Technologies and Operations Supporting Cloud Security
yuj1osm
2
320
テストを軸にした生き残り術
kworkdev
PRO
0
190
ガチな登山用デバイスからこんにちは
halka
1
230
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
370
機械学習を扱うプラットフォーム開発と運用事例
lycorptech_jp
PRO
0
230
20250903_1つのAWSアカウントに複数システムがある環境におけるアクセス制御をABACで実現.pdf
yhana
3
540
Automating Web Accessibility Testing with AI Agents
maminami373
0
1.2k
dbt開発 with Claude Codeのためのガードレール設計
10xinc
2
1.1k
Skrub: machine-learning with dataframes
gaelvaroquaux
0
120
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
520
What's in a price? How to price your products and services
michaelherold
246
12k
The Pragmatic Product Professional
lauravandoore
36
6.9k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Navigating Team Friction
lara
189
15k
KATA
mclloyd
32
14k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Transcript
0 2024-07-05 第97回NearMe技術勉強会 Kenji Hosoda VRPの近傍操作SWAP* について調べてみた
1 SWAP*に興味をもった経緯 • VRPにおける近傍操作のアルゴリズムの⼀つ • いくつかのアクティブなVRPのライブラリで取り⼊れられている ◦ https://github.com/VROOM-Project/vroom ☆1.3k ◦
https://github.com/reinterpretcat/vrp ☆329 ◦ https://github.com/PyVRP/PyVRP ☆229 • ⽐較的最近提案されている ◦ 2020年にarxivで提案 ▪ https://arxiv.org/abs/2012.10384 ◦ 2022年にComputers & Operations Researchに掲載 ▪ https://www.sciencedirect.com/science/article/abs/pii/S030505482100349X • 計算時間が愚直な実装に⽐べて → になる
2 https://developers.google.com/optimization/routing/vrp VRP(Vehicle Routing Problem)ついて ⼀連の場所を訪れる複数の⾞両の最適なルートを⾒つける 車庫 (DEPOT) 車両 1
車両 2 車両 3 車両 4
3 VRPの解き⽅ • 混合整数計画法で解く ◦ 厳密な最適化ができ、解の品質が保証される ◦ 計算時間が⾮常に⻑くなる時がある • メタヒューリスティクスで解く
◦ 厳密な最適解ではないが、実⽤的に良好な解を得られる ◦ 計算時間は⽐較的短く、時間制約を設けて解を得ることも可能 ◦ 問題に応じてアルゴリズムを調整しやすい ◦ シミュレーテッドアニーリング / 遺伝的アルゴリズム など
4 https://www.researchgate.net/publication/363632926_A_reinforcement_learning-Variable_neighborhood_search_method_for_the_capacitated_Vehicle_Routing_Problem VRPの近傍操作について • 近傍操作はメタヒューリスティクスの ⼀部として使⽤される ◦ 近傍操作を繰り返すことで局所解 を探索する •
近傍操作の例 • ルート内 ◦ エッジ繋ぎ変え (2-OPT) ◦ ノード移動 (MOVE) • ルート間 ◦ ノード交換 (SWAP) ◦ ノード移転 (RELOCATE)
5 SWAP操作について A B C D DEPOT E F G
H Route1 Route2 SWAP前の2つのルート
6 SWAP操作について A B C D DEPOT E F G
H Route1 Route2 ルート間でノードを交換する
7 SWAP操作について あるルート間のノードペアにおいては、例えば、 ノードEをRoute1のどこに挿⼊するか、ノードCをRoute2のどこに挿⼊するか、 を洗い出して、その中でベストな挿⼊ポイントを⾒つける A B C D DEPOT
E F G H Route1 Route2 A B C D DEPOT E F G H Route1 Route2 …
8 SWAP操作について • 全体としては、 ◦ ルート間のノードペアがΘ(n^2)通り ◦ あるノードペアにおける挿⼊ポイントがΘ(n^2)通り ◦ で、Θ(n^4)通りの動きがある
• 愚直な実装で、計算時間はΘ(n^3) ◦ (ノードペアにおけるベストな挿⼊ポイントの計算は、 ペアの⽚⽅ずつ独⽴に⾏えるのでΘ(n)の計算時間)
9 SWAP*について 1: EをRoute1に付け加えた時のコストを考える A B C D DEPOT E
F G H C 0E CEA C0A Route1 Route2 上の例のコスト差分は、∆(E, 0, A) = C0E + CEA - C0A となる ※ルートのコストは各エッジのコストの和で決まるものとする
10 SWAP*について 1: EをRoute1に付け加えた時のコストを考える A B C D DEPOT E
F G H CAE CEB CAB Route1 Route2 上の例のコスト差分は、∆(E, A, B) = CAE + CEB - CAB となる
11 SWAP*について A B C D DEPOT E F G
H CBE CEC CBC Route1 Route2 上のコスト差分は、∆(E, B, C) = CBE + CEC - CBC となる 1: EをRoute1に付け加えた時のコストを考える
12 SWAP*について A B C D DEPOT E F G
H CCE CED CCD Route1 Route2 上のコスト差分は、∆(E, C, D) = CCE + CED - CCD となる 1: EをRoute1に付け加えた時のコストを考える
13 SWAP*について 上のコスト差分は、∆(E, C, D) = CDE + CE0 -
CD0 となる 1: EをRoute1に付け加えた時のコストを考える A B C D DEPOT E F G H CDE CD0 Route1 Route2 CE0
14 SWAP*について 上のコスト差分は、 ∆(E, B, D) - ∆(C, B, D)
= (CBE + CED - CBD) - (CBC + CCD - CBD) = CBE + CED - CBC - CCD となる 2: Route1ではCを取り除いて、Cの場所をEで置き換えた場合を考える A B C D DEPOT E F G H CBE CBD Route1 Route2 CED CBC CCD
15 SWAP*について この中から最初コストとなるEの配置を選ぶ ↓Cを取り除く場合はこのパタンはない 1: EをRoute1に付け加える場合 2: Cの場所をEで置き換える場合 ここからCを取り除く (差分コストはさらに∆(C,
B, D)だけ引かれる) こちらは既に Cは取り除かれてる
16 SWAP*について この中から最初コストとなるEの配置を選ぶ 1: EをRoute1に付け加える場合 2: Cの場所をEで置き換える場合 この中から最⼩コストとなるTop3を選ぶ ここからCを取り除く (差分コストはさらに∆(C,
B, D)だけ引かれる) Cを取り除く場合にありえないパタンを除く (Top3の中でありえないパタンは最⼤2個なので、最⼩コストのものは残る) 枠の部分はRoute1で取り除くノードに関わらず 事前に計算して使いまわせる (計算量を”n回分”減らせる)
17 SWAP*のアルゴリズム全体像 ルートペアを選出(計算量削減のため近傍のルートペアに限定) https://arxiv.org/abs/2012.10384 ベストな挿入ポイントの Top3を事前計算 各ルート間のノードペアにおいて 最小コスト差分を計算 ベストなルート間のノードペアを選択 ベストなルート間のノードペアを交換
18 SWAP*の適⽤例 https://arxiv.org/abs/2012.10384 32と46を交換
19 SWAP*のパフォーマンス • 計算時間は最⼤32% → 古典的な⽅法に⽐べ劇的に改善 • 15%ほどの解の改善に貢献 • 解の改善が難しくなる後半の探索ほど解の改善に貢献
https://arxiv.org/abs/2012.10384 これは直感に合う
20 Thank you