Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
やさしくわかるPyTorch入門 / Easy to Learn PyTorch
Search
payanotty
October 28, 2021
Programming
1
1.2k
やさしくわかるPyTorch入門 / Easy to Learn PyTorch
connpassで実施したセミナーの資料になります。
https://studyco.connpass.com/event/227486/
payanotty
October 28, 2021
Tweet
Share
More Decks by payanotty
See All by payanotty
トークナイザー入門
payanotty
4
2.3k
LLM_Prompt_Recovery
payanotty
3
1k
Embeddingモデルを使ったベクトル化のしくみ、fine-tuning手法を解説
payanotty
15
6.1k
Transformerによるテキストベクトル化を解説
payanotty
6
4k
Kaggle_LLMコンペの攻略法を解説.pdf
payanotty
1
1.6k
ManimMLでイケてるアニメーションを作ろう
payanotty
0
780
Lets Finetune LLM
payanotty
3
1.4k
Stable Diffusion Web UI, Let Your Fave Eat Ramen
payanotty
1
1.1k
Lets Finetune Stable Diffusion
payanotty
0
1.3k
Other Decks in Programming
See All in Programming
Grafana:建立系統全知視角的捷徑
blueswen
0
260
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
290
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 2
philipschwarz
PRO
0
130
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
510
AtCoder Conference 2025
shindannin
0
840
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.4k
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
610
PC-6001でPSG曲を鳴らすまでを全部NetBSD上の Makefile に押し込んでみた / osc2025hiroshima
tsutsui
0
200
AIエージェントの設計で注意するべきポイント6選
har1101
6
2.8k
Patterns of Patterns
denyspoltorak
0
400
愛される翻訳の秘訣
kishikawakatsumi
3
360
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
210
Featured
See All Featured
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
200
How to Talk to Developers About Accessibility
jct
1
92
A designer walks into a library…
pauljervisheath
210
24k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Producing Creativity
orderedlist
PRO
348
40k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
350
The SEO Collaboration Effect
kristinabergwall1
0
320
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
88
Mobile First: as difficult as doing things right
swwweet
225
10k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
350
Navigating Weather and Climate Data
rabernat
0
58
Transcript
やさしくわかる PyTorch入門
• 名前: 早野 康太 • お仕事: ◦ 深層学習エンジニア • 好きなこと:
◦ 音ゲー ◦ アニメ ◦ ウマ娘 ◦ 犬とか猫 発表者紹介
• Facebook AI Research (FAIR)により 開発された深層学習ライブラリ • Pythonで深層学習するなら TeonsorFlowとの2択 •
モデルの構造や学習の過程を 直感的に記述することができる PyTorchについて
• Tensor ◦ numpyとほとんど同じ感覚で使える ◦ 勾配 (偏微分) に関する 情報を持っている ◦
GPU上での行列計算が可能 • nn.Module ◦ 全てのモデルのベースとなる型 ◦ 新しいモデルを定義するときは これを継承する Tensor型とModule型
• Tensor ◦ numpyとほとんど同じ感覚で使える ◦ 勾配 (偏微分) に関する 情報を持っている ◦
GPU上での行列計算が可能 • nn.Module ◦ 全てのモデルのベースとなる型 ◦ 新しいモデルを定義するときは これを継承する Tensor型とModule型
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ Tensor型とModule型
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 Tensor型とModule型 forward
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 ◦ backward ▪ モデルの出力テンソルに対して 実行する ▪ 誤差逆伝播法で勾配を計算する Tensor型とModule型 backward forward
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 ◦ backward ▪ モデルの出力テンソルに対して 実行する ▪ 誤差逆伝播法で勾配を計算する Tensor型とModule型 backward forward
• 出力側から入力側に向かって 誤差信号を伝播させていく • 誤差信号 = 偏微分の値 ◦ (正確ではないが) ∂z/∂yとか∂y/∂xが伝播するイメージ
誤差逆伝播法 x y z backward forward
• PyTorchではTensor型同士の 計算が行われる際、 計算結果の中に勾配計算に 必要な情報が保持される • 計算結果にbackwardメソッドを 実行することで 誤差逆伝播法によって 勾配が計算される
自動微分
• y = x2, z = Σx ij 自動微分 x
y z
• y = x2, z = Σx ij • z.backward()
自動微分 x y z dz/dy dy/dx
• y = x2, z = Σx ij • z.backward()
• backward()を実行するとgrad内に勾配値が記録される ◦ y.grad = dz/dy ◦ x.grad = dz/dy * dy/dx 自動微分 x y z dz/dy dy/dx
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight 勾配
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight
• 勾配の分だけパラメータを更新する ◦ 実際はもう少し工夫があって アルゴリズムによっていろんな 更新の仕方がある • 勾配更新のアルゴリズム ◦ SGD
◦ Adam ← 大体これ使とけば間違いない ◦ AdaBeliaf 微分→パラメータ更新 Loss Weight
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する PyTorchでの深層学習の3つのステップ
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する • backward ◦ 誤差逆伝播で勾配を計算する
PyTorchでの深層学習の3つのステップ
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する • backward ◦ 誤差逆伝播で勾配を計算する
• step ◦ 勾配の分だけパラメータを更新する PyTorchでの深層学習の3つのステップ
• 手書き文字画像データ(MNIST)の分類に PyTorchでチャレンジしてみます ◦ Google Colabのノートブック PyTorch実践 ラベル = 5
• PyTorchの特徴 ◦ 自動微分の機能により forward → backwardの流れを直感的に記述することができる ◦ (今回は触れなかったが) ▪
GPU上での計算を高速化する手法に対応している ▪ モデルのレイヤーごとに学習率をいじれるなど 柔軟性の高いモデル設計が可能 • Google Colaboratoryで結構カンタンに試せちゃうので 興味ある方はぜひ触ってみてください さいごに