Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
やさしくわかるPyTorch入門 / Easy to Learn PyTorch
Search
payanotty
October 28, 2021
Programming
1
1.1k
やさしくわかるPyTorch入門 / Easy to Learn PyTorch
connpassで実施したセミナーの資料になります。
https://studyco.connpass.com/event/227486/
payanotty
October 28, 2021
Tweet
Share
More Decks by payanotty
See All by payanotty
トークナイザー入門
payanotty
2
1.6k
LLM_Prompt_Recovery
payanotty
3
930
Embeddingモデルを使ったベクトル化のしくみ、fine-tuning手法を解説
payanotty
15
5.4k
Transformerによるテキストベクトル化を解説
payanotty
4
3.3k
Kaggle_LLMコンペの攻略法を解説.pdf
payanotty
1
1.4k
ManimMLでイケてるアニメーションを作ろう
payanotty
0
730
Lets Finetune LLM
payanotty
3
1.3k
Stable Diffusion Web UI, Let Your Fave Eat Ramen
payanotty
1
1.1k
Lets Finetune Stable Diffusion
payanotty
0
1.3k
Other Decks in Programming
See All in Programming
datadog dash 2025 LLM observability for reliability and stability
ivry_presentationmaterials
0
110
XP, Testing and ninja testing
m_seki
3
190
Go1.25からのGOMAXPROCS
kuro_kurorrr
1
800
git worktree × Claude Code × MCP ~生成AI時代の並列開発フロー~
hisuzuya
1
480
Webの外へ飛び出せ NativePHPが切り拓くPHPの未来
takuyakatsusa
2
360
GoのGenericsによるslice操作との付き合い方
syumai
3
690
Cline指示通りに動かない? AI小説エージェントで学ぶ指示書の書き方と自動アップデートの仕組み
kamomeashizawa
1
580
AWS CDKの推しポイント 〜CloudFormationと比較してみた〜
akihisaikeda
3
310
明示と暗黙 ー PHPとGoの インターフェイスの違いを知る
shimabox
2
320
アンドパッドの Go 勉強会「 gopher 会」とその内容の紹介
andpad
0
260
LINEヤフー データグループ紹介
lycorp_recruit_jp
0
890
PHPで始める振る舞い駆動開発(Behaviour-Driven Development)
ohmori_yusuke
2
190
Featured
See All Featured
Designing Experiences People Love
moore
142
24k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Automating Front-end Workflow
addyosmani
1370
200k
Why You Should Never Use an ORM
jnunemaker
PRO
57
9.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Statistics for Hackers
jakevdp
799
220k
Thoughts on Productivity
jonyablonski
69
4.7k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Transcript
やさしくわかる PyTorch入門
• 名前: 早野 康太 • お仕事: ◦ 深層学習エンジニア • 好きなこと:
◦ 音ゲー ◦ アニメ ◦ ウマ娘 ◦ 犬とか猫 発表者紹介
• Facebook AI Research (FAIR)により 開発された深層学習ライブラリ • Pythonで深層学習するなら TeonsorFlowとの2択 •
モデルの構造や学習の過程を 直感的に記述することができる PyTorchについて
• Tensor ◦ numpyとほとんど同じ感覚で使える ◦ 勾配 (偏微分) に関する 情報を持っている ◦
GPU上での行列計算が可能 • nn.Module ◦ 全てのモデルのベースとなる型 ◦ 新しいモデルを定義するときは これを継承する Tensor型とModule型
• Tensor ◦ numpyとほとんど同じ感覚で使える ◦ 勾配 (偏微分) に関する 情報を持っている ◦
GPU上での行列計算が可能 • nn.Module ◦ 全てのモデルのベースとなる型 ◦ 新しいモデルを定義するときは これを継承する Tensor型とModule型
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ Tensor型とModule型
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 Tensor型とModule型 forward
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 ◦ backward ▪ モデルの出力テンソルに対して 実行する ▪ 誤差逆伝播法で勾配を計算する Tensor型とModule型 backward forward
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 ◦ backward ▪ モデルの出力テンソルに対して 実行する ▪ 誤差逆伝播法で勾配を計算する Tensor型とModule型 backward forward
• 出力側から入力側に向かって 誤差信号を伝播させていく • 誤差信号 = 偏微分の値 ◦ (正確ではないが) ∂z/∂yとか∂y/∂xが伝播するイメージ
誤差逆伝播法 x y z backward forward
• PyTorchではTensor型同士の 計算が行われる際、 計算結果の中に勾配計算に 必要な情報が保持される • 計算結果にbackwardメソッドを 実行することで 誤差逆伝播法によって 勾配が計算される
自動微分
• y = x2, z = Σx ij 自動微分 x
y z
• y = x2, z = Σx ij • z.backward()
自動微分 x y z dz/dy dy/dx
• y = x2, z = Σx ij • z.backward()
• backward()を実行するとgrad内に勾配値が記録される ◦ y.grad = dz/dy ◦ x.grad = dz/dy * dy/dx 自動微分 x y z dz/dy dy/dx
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight 勾配
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight
• 勾配の分だけパラメータを更新する ◦ 実際はもう少し工夫があって アルゴリズムによっていろんな 更新の仕方がある • 勾配更新のアルゴリズム ◦ SGD
◦ Adam ← 大体これ使とけば間違いない ◦ AdaBeliaf 微分→パラメータ更新 Loss Weight
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する PyTorchでの深層学習の3つのステップ
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する • backward ◦ 誤差逆伝播で勾配を計算する
PyTorchでの深層学習の3つのステップ
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する • backward ◦ 誤差逆伝播で勾配を計算する
• step ◦ 勾配の分だけパラメータを更新する PyTorchでの深層学習の3つのステップ
• 手書き文字画像データ(MNIST)の分類に PyTorchでチャレンジしてみます ◦ Google Colabのノートブック PyTorch実践 ラベル = 5
• PyTorchの特徴 ◦ 自動微分の機能により forward → backwardの流れを直感的に記述することができる ◦ (今回は触れなかったが) ▪
GPU上での計算を高速化する手法に対応している ▪ モデルのレイヤーごとに学習率をいじれるなど 柔軟性の高いモデル設計が可能 • Google Colaboratoryで結構カンタンに試せちゃうので 興味ある方はぜひ触ってみてください さいごに