Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Lets Finetune Stable Diffusion
Search
payanotty
April 06, 2023
Technology
0
1.3k
Lets Finetune Stable Diffusion
payanotty
April 06, 2023
Tweet
Share
More Decks by payanotty
See All by payanotty
トークナイザー入門
payanotty
4
2k
LLM_Prompt_Recovery
payanotty
3
990
Embeddingモデルを使ったベクトル化のしくみ、fine-tuning手法を解説
payanotty
15
6k
Transformerによるテキストベクトル化を解説
payanotty
5
3.9k
Kaggle_LLMコンペの攻略法を解説.pdf
payanotty
1
1.5k
ManimMLでイケてるアニメーションを作ろう
payanotty
0
770
Lets Finetune LLM
payanotty
3
1.3k
Stable Diffusion Web UI, Let Your Fave Eat Ramen
payanotty
1
1.1k
Deffusion解説
payanotty
3
910
Other Decks in Technology
See All in Technology
改竄して学ぶコンテナサプライチェーンセキュリティ ~コンテナイメージの完全性を目指して~/tampering-container-supplychain-security
mochizuki875
1
360
マルチドライブアーキテクチャ: 複数の駆動力でプロダクトを前進させる
knih
0
6.7k
機密情報の漏洩を防げ! Webフロントエンド開発で意識すべき漏洩パターンとその対策
mizdra
PRO
10
4.3k
OSだってコンテナしたい❗Image Modeが切り拓くLinux OS運用の新時代
tsukaman
0
110
[CV勉強会@関東 ICCV2025 読み会] World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model (Zheng+, ICCV 2025)
abemii
0
240
AIエージェントによるエンタープライズ向けスライド検索!
shibuiwilliam
4
630
Quarkusで作るInteractive Stream Application
joker1007
0
160
AWS re:Invent 2025 で頻出の 生成 AI サービスをおさらい
komakichi
2
170
Javaコミュニティの歩き方 ~参加から貢献まで、すべて教えます~
tabatad
0
140
その意思決定、まだ続けるんですか? ~痛みを超えて未来を作る、AI時代の撤退とピボットの技術~
applism118
25
14k
レガシーで硬直したテーブル設計から変更容易で柔軟なテーブル設計にする
red_frasco
4
430
AIを前提に、業務を”再構築”せよ IVRyの9ヶ月にわたる挑戦と未来の働き方 (BTCONJP2025)
yueda256
1
790
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
Code Review Best Practice
trishagee
72
19k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
The Language of Interfaces
destraynor
162
25k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Transcript
Stable Diffusionで 自分だけの お絵描きAIを作ろう 早野康太
自己紹介 • 名前 ◦ 早野 康太 • お仕事 ◦ 自然言語モデルの改善
• 春アニメおすすめ ◦ 僕ヤバ ◦ 水星の魔女 第2期 • 映画 ◦ BLUE GIANT → 神でした (原作一気買い)
Stable Diffusionとは • 文章を与えると画像を生成してくれるモデル • 2022年にStability AIが公開 ◦ Google Colaboratoryを使えばサクッと試せる
▪ https://huggingface.co/stabilityai/stable-diffusion-2
Stable Diffusionとは • モデルを誰でも利用できるため Stable Diffusionを使ったサービスや派生モデルの公開など さかんに行われている ◦ 画像生成bot ▪
Line, Discordなど ◦ 派生モデル ▪ NovelAI Diffusion ▪ Waifu Diffusion ▪ ほか、Huggingfaceで検索したら無限に出てくる • Models - Hugging Face
Stable Diffusionとは • Stable Diffusion ◦ 誰でも利用できる → 自分だけのオリジナルモデルを作成可能 ◦
lambdalabs/sd-pokemon-diffusers · Hugging Face
今回の発表では • Stable Diffusionをfine-tuneして オリジナルモデルを作成するデモを Google Colaboratoryで実践します ◦ データセットの作成→学習→モデル保存&ロードまでを ノートブックで完結させます
▪ 学習用notebook
前提とする知識 • PyTorch ◦ 今日お見せする学習コードはPyTorchで書かれています ◦ 最低限PyTorchで簡単なNN学習を実装できる程度の知識は必要です • 機械学習 ◦
深層学習の基本的な用語の意味については知っている前提で 進めます
アジェンダ • データセットの作成 ◦ 画像の収集 ◦ キャプション付け ▪ BLIPを利用して自動でキャプションをつけよう •
学習 ◦ Stable Diffusionの学習のやり方 ◦ 学習コードの解説 • 推論 ◦ 作ったモデルで画像を生成してみる
データセットの作成 • データセットの構成 ◦ 画像とキャプションが1対1に対応したもの 出典:ぼっち・ざ・ろっく! CloverWorks、アニプレックス、芳文社、 ©はまじあき/芳文社・アニプレックス キュビズムみたいな作画になった 後藤ひとり
画像 キャプション ×N
データセットの作成 • 画像収集 ◦ Safebooru (画像投稿サイト) のAPIを利用して収集 ▪ “umamusume”タグで絞り込んで15,000枚 •
キャプション付け ◦ BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation ▪ 2022年1月に論文で発表されたモデル ▪ 画像を入力として その画像に即したキャプションを出力できる
データセットの作成 image file caption path/to/image1.png a group of cartoon
animals sitting next to ... path/to/image2.png an anime girl with long hair and a bow in her ... path/to/image3.png a couple of anime girls laying on top of a bed csv 画像ファイル
Stable Diffusionの学習 VAE VAE Denoising Autoencoder (UNET) Text Encoder input
text 出典:ぼっち・ざ・ろっく! CloverWorks、アニプレックス、芳文社、 ©はまじあき/芳文社・アニプレックス
Stable Diffusionの学習 VAE VAE Denoising Autoencoder (UNET) Text Encoder input
text 今回はここだけ 学習する 出典:ぼっち・ざ・ろっく! CloverWorks、アニプレックス、芳文社、 ©はまじあき/芳文社・アニプレックス
Stable Diffusionの学習 x 0 x 1 = x
0 + ε 1 x 2 = x 1 + ε 2 x 3 = x 2 + ε 3 z 1 = x 0 - ε θ (z 0 , 0) z 2 = z 1 - ε θ (z 1 , 1) z 3 = z 2 - ε θ (z 2 , 2) 出典:ぼっち・ざ・ろっく! CloverWorks、アニプレックス、芳文社、 ©はまじあき/芳文社・アニプレックス z 0
Stable Diffusionの学習 x 0 x 1 = x
0 + ε 1 x 2 = x 1 + ε 2 x 3 = x 2 + ε 3 z 1 = x 0 - ε θ (z 0 , 0) z 2 = z 1 - ε θ (z 1 , 1) z 3 = z 2 - ε θ (z 2 , 2) 出典:ぼっち・ざ・ろっく! CloverWorks、アニプレックス、芳文社、 ©はまじあき/芳文社・アニプレックス z 0 各タイムステップにおいて 付加したノイズをターゲットとして ロスを計算する
Stable Diffusionの学習 raw pixel value VAE latent noisy
latent + noise input text Text Encoder embedding UNET prediction loss velocity
Stable Diffusionの学習 raw pixel value VAE latent noisy
latent + noise input text Text Encoder embedding UNET prediction loss velocity 前処理
余談: velocityってなんぞ? x : 画像の値 ε : ノイズの値
z = αx + σε • Stable Diffusion 1.0 ◦ εがターゲット • Stable Diffusion 2.0 ◦ vがターゲット ※理屈がわかっていないため深入りしません α, σ : ノイズ付与のハイパラ (タイムステップごとに変動) v = dz / dφ Progressive Distillation for Fast Sampling of Diffusion Models
学習してみた結果 • 作りたかったモデル ◦ ウマ娘風の絵柄でイラストを生成するAI (3期も始まるので備えたい) • データセット
◦ 画像 ▪ Safebooru APIを使い”umamusume”タグで 収集した画像(10,000 - 15,000枚) ◦ キャプション ▪ 収集した画像をもとにBLIPで生成 • モデル ◦ backbone ▪ stabilityai/stable-diffusion-2
素のStable Diffusion • プロンプト ◦ “a girl in a
maid outfit holding a teapot”
UMA Diffusion • プロンプト ◦ “a girl in a
maid outfit holding a teapot” • 画像数: 10,000 • ハイパラ ◦ epochs: 30 ◦ batch_size: 4 ◦ lr: 5e-6 ◦ lr_scheduler: cosine ◦ warmup_ratio: 0.06 ◦ resolution: 512x512 ◦ transforms ▪ RandomCrop
UMA Diffusion • プロンプト ◦ “a girl in a
maid outfit holding a teapot” • 画像数: 15,000 • ハイパラ ◦ epochs: 30 ◦ batch_size: 4 ◦ lr: 5e-6 ◦ lr_scheduler: cosine ◦ warmup_ratio: 0.06 ◦ resolution: 512x512 ◦ transforms ▪ RandomCrop
UMA Diffusion • プロンプト ◦ “a girl in a
maid outfit holding a teapot” • 画像数: 10,000 • ハイパラ ◦ epochs: 30 ◦ batch_size: 4 ◦ lr: 5e-6 ◦ lr_scheduler: cosine ◦ warmup_ratio: 0.06 ◦ resolution: 512x384 ◦ transforms ▪ RandomCrop
UMA Diffusion • プロンプト ◦ “a girl in a
maid outfit holding a teapot” • 画像数: 15,000 • ハイパラ ◦ epochs: 30 ◦ batch_size: 4 ◦ lr: 5e-6 ◦ lr_scheduler: cosine ◦ warmup_ratio: 0.06 ◦ resolution: 512x384 ◦ transforms ▪ RandomCrop
finetune方法発展 • 今回はシンプルなfinetuneを紹介したが さまざまなfinetune手法が提案されている ◦ Text Inversion ▪ An
Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion ◦ DreamBooth ▪ DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation ◦ Hypernetworks ▪ NovelAI Improvements on Stable Diffusion ◦ LoRA ▪ GitHub - cloneofsimo/lora: Using Low-rank adaptation to quickly fine-tune diffusion models.
やってみた所感 • DNNの学習を触ったことがあるなら 学習コードを回すこと自体は全然難しくない ◦ 計算資源の確保が大変 (GPUメモリ16GB以上推奨) • 10,000枚程度の画像でもある程度のクオリティの
モデルを学習できた ◦ とはいえ安定したクオリティの出力は難しい ◦ 特に手の作画は崩れてしまう • よりクオリティを追求しようとするなら 発展的な手法を使ったfinetuneを試したいところ (いずれ挑戦したい)