Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
制約理論(ToC)入門
Search
Recruit
PRO
August 09, 2024
Technology
3
950
制約理論(ToC)入門
2024年度リクルート エンジニアコース新人研修の講義資料です
Recruit
PRO
August 09, 2024
Tweet
Share
More Decks by Recruit
See All by Recruit
大規模プロダクトにおける組織作りと技術ポートフォリオマネジメント
recruitengineers
PRO
3
160
OR学会2024秋_短期収益と将来のオフ方策評価性能を考慮したクーポン割当方策混合比の決定
recruitengineers
PRO
4
330
リクルート新人研修2024 テキスト生成AI活用
recruitengineers
PRO
11
490
リクルートのデータマネジメント組織に 求められてきたコト
recruitengineers
PRO
4
370
最短最速に魂を売る! 新しいアーキテクチャとプロセスの提案!
recruitengineers
PRO
5
110
プロデザ! BY リクルートvol.22_様々なプロダクト経験の中で活きたPdMのスキル
recruitengineers
PRO
3
180
JavaScript研修 (2024)
recruitengineers
PRO
7
3.6k
TypeScript入門 2024
recruitengineers
PRO
25
14k
React 研修 (2024)
recruitengineers
PRO
38
14k
Other Decks in Technology
See All in Technology
#Zenoh 完全に理解した 〜組込み純情篇〜
takasehideki
1
470
2024年版 運用者たちのLLM
nwiizo
3
460
技術ブログや登壇資料を秒で作るコツ伝授します
minorun365
PRO
23
5.2k
PlaywrightによるE2Eテスト入門 / Introduction to E2E Testing with Playwright
rhumie
3
1k
バックログを導入し やっぱやめた話
ota42y
0
190
LLMに日本語テキストを学習させる意義
ksaito
13
3.7k
HolidayJp.jl を作りました
mrkn
0
120
夏休みの(最後の)宿題 for JuliaTokyo #12
antimon2
0
140
LLM を現場で評価する
asei
4
700
AI活用したくてもできなかった不動産SaaSの今とこれから
nealle
0
200
App Router を実プロダクトで採用して見えてきた勘所をちょっとだけ紹介
marokanatani
0
700
AWS SAW を広めたい @四国クラウドお遍路
kazzpapa3
0
210
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
25
1.3k
Web Components: a chance to create the future
zenorocha
308
41k
The Straight Up "How To Draw Better" Workshop
denniskardys
230
130k
Visualization
eitanlees
142
15k
Intergalactic Javascript Robots from Outer Space
tanoku
268
26k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
22
3.9k
Scaling GitHub
holman
458
140k
Into the Great Unknown - MozCon
thekraken
28
1.4k
It's Worth the Effort
3n
182
27k
GitHub's CSS Performance
jonrohan
1029
450k
What's new in Ruby 2.0
geeforr
340
31k
Facilitating Awesome Meetings
lara
49
5.9k
Transcript
্ౡݡ࢜ʢ4BUPTIJ6&+*."ʣ ੍ཧʢ5P$ʣೖ
גࣜձࣾϦΫϧʔτ ൢଅྖҬϓϩμΫτσΟϕϩοϓϝϯτ1Ϣχοτʢॅ·͍ʣ Vice President ্ౡ ݡ࢜ʢSatoshi UEJIMAʣ ▪ܦྺ 2007ɿେखSIer ɹ৽ଔೖࣾ
2013ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζɹೖࣾ 2015ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζ ΤϯδχΞϦϯάGɹάϧʔϓϚωʔδϟʔ 2016ɿಉ্ɹ݉ɹגࣜձࣾϦΫϧʔτϚʔέςΟϯάύʔτφʔζ 2017ɿಉ্ɹ݉ɹגࣜձࣾϦΫϧʔτॅ·͍Χϯύχʔ 2019ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζ ϥΠϑΠϕϯτྖҬΤϯδχΞϦϯά෦ɹ෦ ɹɹɹɹɹ݉ɹגࣜձࣾϦΫϧʔτॅ·͍Χϯύχʔ 2020ɿגࣜձࣾϦΫϧʔτ ॅ·͍ྖҬΤϯδχΞϦϯά෦ɹ෦ ɹɹɹɹɹ݉ɹॅ·͍ྖҬ։ൃσΟϨΫγϣϯ෦ 2022ɿגࣜձࣾϦΫϧʔτ ൢଅྖҬʢॅ·͍ɾM&FɾࣗಈंɾཱྀߦʣΤϯδχΞϦϯά෦ɹ෦ ɹ݉ɹॅ·͍ྖҬ։ൃσΟϨΫγϣϯ෦ 2023ɿגࣜձࣾϦΫϧʔτ ॅ·͍ྖҬ։ൃσΟϨΫγϣϯ෦ɹ෦ ɹ݉ɹࣄۀ։ൃྖҬ։ൃσΟϨΫγϣϯ෦ ɹɹɹɹ ݉ɹ৽نࣄۀ։ൃࣨ 2024ɿגࣜձࣾϦΫϧʔτ ൢଅྖҬϓϩμΫτσΟϕϩοϓϝϯτ1Uʢॅ·͍ʣVP
"HFOEB 1. ੍ཧʢTOCʣͱ 2. اۀͷΰʔϧʢඪʣͱ 3. ੍ʢϘτϧωοΫʣͱεϧʔϓοτ 4. όοναΠζͱϦʔυλΠϜ 5.
ιϑτΣΞ։ൃݱͰͷ 6. ·ͱΊ
50$ʢ5IFPSZPG$POTUSBJOUTɿ੍ཧʣͱ ΠεϥΤϧͷཧֶऀΤϦϠϑɾΰʔϧυϥοτത࢜ʹΑͬͯఏএ͞Εͨ ੜ࢈ཧܦӦͷશମ࠷దԽͷվળख๏ “ͲΜͳγεςϜͰ͋Εɺৗʹ͘͝গͷཁૉ/ҼࢠʹΑͬͯɺ ͦͷతୡʹ͚ͨύϑΥʔϚϯε੍͕ݶ͞Ε͍ͯΔ” “੍ʹϑΥʔΧεͯ͠ղܾΛߦ͑ɺখ͞ͳมԽͱ খ͞ͳྗͰ࣌ؒͷ͏ͪʹஶ͍͠Ռ͕ಘΒΕΔ” ※ຊݚमͰΰʔϧυϥοτത࢜ͷஶॻʮβɾΰʔϧʯͷΤοηϯεͷհͱɺ ιϑτΣΞ։ൃͷݱʹ͓͚ΔྫΛަ͑ͨઆ໌Λ͍͖ͯ͠·͢ɻ
اۀͷΰʔϧʢඪʣͱ ʰ͓ۚΛṶ͚ଓ͚Δ͜ͱʱ
اۀͷΰʔϧʢඪʣͱ ʰ͓ۚΛṶ͚ଓ͚Δ͜ͱʱ ܦӦͷࢦඪ • ७རӹ • ࢿճऩ • Ωϟογϡϑϩʔ ݱͷࢦඪ
ʁʁʁ
اۀͷΰʔϧʢඪʣͱ ܦӦͷࢦඪ • ७རӹ • ࢿճऩ • Ωϟογϡϑϩʔ ݱͷࢦඪ •εϧʔϓοτɿൢചʢNot
ੜ࢈ʣΛ௨͓ͯۚ͡Λ࡞Γग़ׂ͢߹ •ࡏݿɿൢച͠Α͏ͱ͢ΔΛߪೖ͢ΔͨΊʹࢿͨ͠શͯͷ͓ۚ •ۀඅ༻ɿࡏݿΛεϧʔϓοτʹม͑ΔͨΊʹඅ͓ۚ͢ ʰ͓ۚΛṶ͚ଓ͚Δ͜ͱʱ
੍ʢϘτϧωοΫʣͱεϧʔϓοτ • ϋΠΩϯά • ͱ͋Δ • ܧଓվળʹ͚ͨ5εςοϓ
ϋΠΩϯάʢୂྻΛΈతΛࢦ͢ʣ
ྻͷ͕͞ͲΜͲΜ͘ͳΔ ͠Β͘͢Δͱʜ
ґଘతࣄʢͭͳ͕Γʣ 8km/࣌ͷೳྗ 3km/࣌ͷೳྗ ͨͱ͑8km/࣌Ͱา͚ͨͱͯ͠ɺ લͷΧΤϧ͕3km/͔࣌͠า͚ͳ͚Ε 1࣌ؒʹ3km͔͠ਐΉ͜ͱ͕Ͱ͖ͳ͍ ʢ͘ਐΉʹ੍ݶ͕͋Δʣ ౷ܭతมಈʢΒ͖ͭʣ ฏۉ3km/࣌ ۺඥΛͨ͠Γɺ͵͔ΔΈΛආ͚ͨΓͰ
2km/࣌ͰਐΉ͜ͱ͋Εɺલͱͷڑ ΛॖΊΔͨΊʹ4km/࣌ͰਐΉ͜ͱ͋Δ ʢਐΉ͞ʹόϥ͖͕ͭ͋Δʣ ౷ܭతมಈͱґଘతࣄ
౷ܭతมಈͱґଘతࣄ ͘า͘ ʢ= มಈʣ ۺඥ݁ͿͨΊʹ ࢭ·Δ ʢ= มಈʣ ࢭ·Δ ͘า͘
͘า͘ า͘ ʢ3km/࣌ʣ ґଘ ґଘ ґଘ ͘ਐΉʹ੍ݶ͕͋Δ͕ɺ͘ਐΉʹ੍ݶ͕ແ͍ͨΊɺୂྻແ੍ݶʹ͘ͳ͍ͬͯ͘ɻ Ұ͘ͳͬͯ͠·ͬͨୂྻΛݩͷ͞ʹͨ͢ΊʹɺޙΖΛา͘શͯͷΧΤϧ͕ ࣗͷલʹִ͕ͬͨؒͷ߹ܭʢมಈͷੵʣΛઌ಄ͷΧΤϧͷฏۉΑΓ͘า͘ඞཁ͕͋Δɻ มಈʹΑΓִ͕ͬͨؒ
ྻͷ͕͞ͲΜͲΜ͘ͳΔ ͠Β͘͢Δͱʜʢ࠶ܝʣ ʢগ͠ϦΧόϦʣ ʢલ͕͍ͷͰ ͍ൈ͔ͨ͠ʣ ※า͘ͷ͕ Ұ൪͍
ʲࡐྉͷೖʳ ʲͷൢചʳ εϧʔϓοτʢ ↘︎ ʣ ྻͷ͞ = ࡏݿʢ ↗︎ ʣ
า͘ͷʹඞཁͳΤωϧΪʔ = ۀඅ༻ʢ ↗︎ ʣ ͜ͷୂྻΛʮา͍ͨಓʯͱ͍͏Λ࡞͍ͬͯΔͱΈͳ͢ͱɺઌ಄͕ະ౿ͷಓΛา͘ = ੜ࢈Λ։࢝ɺ ࠷ޙඌ͕า͍ͯ͡Ί͕ͯൢച͞ΕΔ͜ͱʹͳΔɻΑͬͯɺ࠷ޙඌͷา͘εϐʔυ = εϧʔϓοτɻ ઌ಄͕า͖࢝Ίɺ࠷ޙඌ͕า͖ऴΘΔ·Ͱͷಓֻ෦ͷࡏݿʹͳΔɻ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ʲࡐྉͷೖʳ ʲͷൢചʳ ※า͘ͷ͕ Ұ൪͍ ੍ݶ ୂྻશମͷεϧʔϓοτΛܾΊ͍ͯΔ = ੍ʢϘτϧωοΫʣ ੍ʢϘτϧωοΫʣҎ֎ͷϓϩηεͷೳྗΛ্ͤͯ͞εϧʔϓοτͷ૿Ճʹد༩͠ͳ͍ɻ ͦΕͲ͜Ζ͔ɺࡏݿۀඅ༻Λ૿Ճͤ͞ΩϟογϡϑϩʔͷѱԽΛͨΒ͢߹͋Δɻ
੍ʢϘτϧωοΫʣʹ͚ͩϑΥʔΧεͯ͠ରॲ͍ͯ͘͜͠ͱ͕શମ࠷దΛͨΒ͢ɻ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ྻͷ͞ = ࡏݿʢ ↘︎ ʣ ୂྻͷઌ಄ ୂྻશମͷΛҰ൪า͘ͷ͕͍ΧΤϧʹैΘͤΔ͜ͱͰྻ͕͘ͳͬͯ͠·͏͜ͱΛ੍ɻ ͔͠͠ɺεϧʔϓοτΛ্͛ΔͨΊʹɺઌ಄ͷΧΤϧͷεϐʔυΛԿʹ্͛Δ͔͕伴ɻ ͍ ͓ͦ
Α པΉ ੍ʹଞΛैଐͤ͞Δ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ෛՙʢॏ͍ՙʣΛࢄ = UP εϧʔϓοτʢ ↗︎ ʣ ੍ʢϘτϧωοΫʣͷෛՙΛܰͯ͘͠ೳྗΛ্ͤͨ͜͞ͱʹΑΓεϧʔϓοτ্͕ͨ͠ɻ ੍ͱͦΕҎ֎ʢඇ੍ʣͷ۠ผΛ͚ͭΔ͜ͱ͕ॏཁɻΤϦϠϑɾΰʔϧυϥοτࢯᐌ͘ɺ ʰ੍ͱඇ੍ͷ۠ผΛ͍ܽͨԿͳΔྗܾ࣮ͯ͠Λ݁ͳ͍ʱ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ʢඇ੍ϦιʔεͰ੍ ϦιʔεΛॿ͚Δ͜ͱͰʣ ੍ͷੑೳΛ্͛Δ
੍ʢϘτϧωοΫʣͱεϧʔϓοτ • ϋΠΩϯά • ͱ͋Δ • ܧଓվળʹ͚ͨ5εςοϓ
ͱ͋Δʢػց ਓखͰϞϊΛ࡞Δʣ ʮࠓͷ࣌·Ͱʹݸ࡞ͬͯग़ՙͤΑʯ 12࣌ 13࣌ 14࣌ 15࣌ 16࣌ 17࣌ Έཱͯ
25ݸ Έཱͯ 25ݸ Έཱͯ 25ݸ Έཱͯ 25ݸ ग़ՙ 100ݸ Έཱͯɾ ༹ࡁΈ ༹ 25ݸ ༹ 25ݸ ༹ 25ݸ ༹ 25ݸ Έཱͯʢฏۉ25ݸ/࣌ʣ ༹ʢฏۉ25ݸ/࣌ʣ ग़ՙ·ͰͷఔʮΈཱͯʯͱʮ༹ʯͷΈɻ ֤ఔͷฏۉॲཧྔ͔Βܭࢉ͢Δͱ17࣌·Ͱʹ100ݸ࡞Δ͜ͱ͕Ͱ͖Δͣ…
ͱ͋Δʢػց ਓखͰϞϊΛ࡞Δʣ ʮࠓͷ࣌·Ͱʹݸ࡞ͬͯग़ՙͤΑʯ 12࣌ 13࣌ 14࣌ 15࣌ 16࣌ 17࣌ Έཱͯ
2519ݸ Έཱͯ 2521ݸ Έཱͯ 2528ݸ Έཱͯ 2532ݸ ग़ՙ 10090ݸ Έཱͯɾ ༹ࡁΈ ༹ 2519ݸ ༹ 2521ݸ ༹ 25ݸ ༹ 25ݸ Έཱͯʢฏۉ25ݸ/࣌ʣ ༹ʢฏۉ25ݸ/࣌ʣ ΈཱͯఔʹΒ͖ͭʢ౷ܭతมಈʣ͕͋Γɺͦ͜ʹͭͳ͕Γʢґଘతࣄʣͷ͋Δ༹ఔʹ • 12࣌ͱ13࣌ɿॲཧೳྗΑΓগͳ͍෦͔͠ྲྀΕͯ͜ͳ͔ͬͨɻ • 14࣌ͱ15࣌ɿॲཧೳྗΛ͑ͨ෦͕ྲྀΕ͖͕ͯͨɺաॲཧͰ͖ͳ͔ͬͨɻ
ᶃ੍ʢϘτϧωοΫʣΛൃݟ͢Δ ॲཧೳྗɿ100 Քಇɿ100% ఔA ఔB ఔC ఔD ࡏݿɿ32 ࢿࡐೖ 100
ࡏݿɿ20 ग़ՙ 48 ॲཧೳྗɿ80 Քಇɿ100% ॲཧೳྗɿ60 Քಇɿ80% ॲཧೳྗɿ100 Քಇɿ48%
ग़ՙ 48 ॲཧೳྗɿ60 Քಇɿ80% ॲཧೳྗɿ100 Քಇɿ48% ᶃ੍ʢϘτϧωοΫʣΛൃݟ͢Δ ఔA ఔB ఔC
ఔD ࡏݿɿ32 ࢿࡐೖ 100 ࡏݿɿ20 ੍ʢϘτϧωοΫʣ εϧʔϓοτΛܾΊ͍ͯΔ ॲཧೳྗɿ100 Քಇɿ100% ॲཧೳྗɿ80 Քಇɿ100%
ग़ՙ 48 ॲཧೳྗɿ60 Քಇɿ80% ॲཧೳྗɿ100 Քಇɿ48% ఔA ఔB ఔC ఔD
ࢿࡐೖ 100 ࡏݿɿ20 ᶄ੍ʢϘτϧωοΫʣΛ࠷େ׆༻͢Δ Ճࢿͷલʹ·ͣపఈతʹ׆༻͢Δํ๏Λߟ͑Δ • Քಇ͕80%→100%Λࢦ͢ • ͍·ඞཁͳϞϊ͚ͩ࡞Δ • Bఔͷෛՙࢄ ࠷େ׆༻Λߟ͑Δ ॲཧೳྗɿ100 Քಇɿ100% ॲཧೳྗɿ80 Քಇɿ100% ࡏݿɿ32
ग़ՙ 60 ॲཧೳྗɿ60 Քಇɿ100% ॲཧೳྗɿ100 Քಇɿ60% ఔA ఔB ఔC ఔD
ࡏݿɿ8 ࢿࡐೖ 100 ࡏݿɿ32 ᶄ੍ʢϘτϧωοΫʣΛ࠷େ׆༻͢Δ ͜͏ͳΔͣ -24 +12 ඇ੍Λ੍ͷೳྗΛ͑ͯಇ͔͍ͤͯΔͨΊൃੜ͢Δ༨ࡏݿ →ɹݮΒ͍ͨ͠ʢҰఆͷόοϑΝඞཁ͚ͩͲʣ ʢඇ੍ϦιʔεͰ੍ϦιʔεΛॿ͚Δ͜ͱͰʣ ੍ͷੑೳΛ্͛Δ ॲཧೳྗɿ100 Քಇɿ100% ॲཧೳྗɿ80 Քಇɿ85%
ఔA ఔB ఔC ఔD ग़ՙ 60 ࢿࡐೖ 100→ 80 ᶅଞͷܾఆΛ੍ʢϘτϧωοΫʣʹैΘͤΔ
ϘτϧωοΫʹ߹Θͤͯࢿࡐೖ ※όοϑΝʢࡏݿɾظؒʣߟྀ ੍ʹଞΛैଐͤ͞Δ ࡏݿɿ8 ࡏݿɿ12 ॲཧೳྗɿ60 Քಇɿ100% ॲཧೳྗɿ100 Քಇɿ60% ॲཧೳྗɿ100 Քಇɿ80% ॲཧೳྗɿ80 Քಇɿ85% -20 ࡏݿͷݮগ = ΩϟογϡϑϩʔͷྑԽ
ఔA ఔB ఔC ఔD ग़ՙ 60 • ઃඋࢿ • ࡞ۀվળ
• ఔվળ ᶆ੍ͷೳྗΛߴΊΔ ࢿࡐೖ 80→ 90 Ͳ͏ͳΔ͔ʁ +10 +30ʁ Ϝμ͕࠷খԽ͞Εͨঢ়ଶͰɺࢿʹΑΓϘτϧωοΫͷೳྗ্ = εϧʔϓοτ্Λૂ͏ɻ ॲཧೳྗɿ60→90 ॲཧೳྗɿ100 ॲཧೳྗɿ100 ॲཧೳྗɿ80
ఔA ఔB ఔC ఔD ग़ՙ 68 ࡏݿɿ0 ࡏݿɿ22 ॲཧೳྗɿ90 Քಇɿ75.5%
ॲཧೳྗɿ100 Քಇɿ68% ॲཧೳྗɿ100 Քಇɿ90% ॲཧೳྗɿ80 Քಇɿ85% ᶇ੍͕ղফͨ͠Βᶃ੍Λݟ͚ͭΔɺʹΔ ࢿࡐೖ 80→ 90 +10 ੍ʢϘτϧωοΫʣ +8 ੍͕ҠΔͱγεςϜҎલͱશ͘ผʹͳΓɺݹ͍ํࣗମ੍͕ʹͳΔɻ ˞ଦੑʹؾΛ͚ͭͯܧଓతʹվળ͢Δඞཁ͕͋Δɻ -8
੍ʢϘτϧωοΫʣͱεϧʔϓοτ • ϋΠΩϯά • ͱ͋Δ • ܧଓվળʹ͚ͨ5εςοϓ
'PDVTJOH4UFQT ᶅ ଞͷશͯΛᶄͷܾఆʹ ैଐͤ͞Δ ᶆ ੍ͷೳྗΛߴΊΔ ᶄ ੍ΛͲ͏పఈ׆༻ ͢Δ͔ܾΊΔ ᶇ
੍͕ղফͨ͠Β ᶃʹΔ ᶃ ੍Λݟ͚ͭΔ
੍ͷλΠϓɾಛ ཧత੍ ࢢͷ੍ ํͷ੍ ஔઃඋɺਓతϦιʔεʹىҼ͢Δͷ धཁސ٬ͳͲͷࢢཁૉʹىҼ͢Δͷ ձࣾͷํ׳शʹىҼ͢Δͷ ※ѹతʹ͜ͷ੍͕ଟ͍ʂ ੍ͷಛ ✓
ࡏݿ͕ཷ·Δ ✓ ॲཧ͕͍࣌ؒ ✓ τϥϒϧ͕ଟ͍ ✓ Քಇߴ͍
੍ͷλΠϓɾಛ ཧత੍ ࢢͷ੍ ํͷ੍ ஔઃඋɺਓతϦιʔεʹىҼ͢Δͷ धཁސ٬ͳͲͷࢢཁૉʹىҼ͢Δͷ ձࣾͷํ׳शʹىҼ͢Δͷ ※ѹతʹ͜ͷ੍͕ଟ͍ʂ ੍ͷಛ ✓
ࡏݿ͕ཷ·Δ ✓ ॲཧ͕͍࣌ؒ ✓ τϥϒϧ͕ଟ͍ ✓ Քಇߴ͍ 㾎੍ʮѱʯͰͳ͘ʮࣄ࣮ʯ 㾎Ѳͯ͠ίϯτϩʔϧ͢Δ͜ͱ͕େࣄ
όοναΠζͱϦʔυλΠϜ • Ұճ͋ͨΓͷॲཧྔͷ͜ͱΛʮόονʯ • όονͷେ͖͞ΛʮόοναΠζʯ • όοναΠζΛখ͘͢͞Δ͜ͱͰϦʔυλΠϜ͕͘ͳΔ = εϧʔϓοτ্͕͕Δʢ߹͕͋Δʣ
࡞ۀͷྲྀΕ ଟ͘ͷ࡞ۀ ʮᶃηοτΞοϓλΠϜʢஈऔΓͷ࣌ؒʣ→ᶄϓϩηελΠϜʢॲཧͷ࣌ؒʣ → ᶅΩϡʔλΠϜ&ΣΠτλΠϜʢ࡞ۀͪͷ࣌ؒʣʯͷ࿈ଓ ※ͦͯ͠େମʹ͓͍ͯʮΩϡʔλΠϜ&ΣΠτλΠϜʯ͕͔͔͘Γ͕ͪɺͱ͞Ε͍ͯΔ ᶃηοτΞοϓλΠϜ ʢόοναΠζʹΑΔมಈͳ͠ʣ ᶄϓϩηελΠϜ ʢόοναΠζͰมಈʣ
ᶅΩϡʔλΠϜ&ΣΠτλΠϜ ʢόοναΠζͰมಈʣ ఔA ఔB ఔC
όοναΠζʹΑΔ-5ൺֱʢྫʣ ŰƄŕŧšŘţƄ:1 ŰƄŕŧšŘţƄ:5 ఔA ఔB ఔC ηοτΞοϓλΠϜ͕খ͍͞ɻ όοναΠζ͕খ͍͞ํ͕ɺ ϓϩηελΠϜ/͕ͪ࣌ؒ গͳ͘ͳΔɻ
ఔA ఔB ఔC ఔA ఔB ఔC ఔA ఔB ఔC ఔA ఔB ఔC ఔA ఔB ఔC
όοναΠζখͯ͘͞-5͕͘ͳΒͳ͍͜ͱ ✓ େ͖ͳόονͰେྔʹॲཧͨ͠ํ͕ϓϩηελΠϜ͕͘ͳΔ߹ → ಉ࣌ฒߦͰେྔੜ࢈Ͱ͖ΔػցΛಋೖ͢ΔͳͲʢਓखͩͱجຊ1͔ͭͣͭ͠ॲཧͰ͖ͳ͍ʣ ηοτΞοϓλΠϜ͕େ͖͍ɻ όοναΠζ͕খͯ͘͞ɺ ϓϩηελΠϜ/͕ͪ࣌ؒ͘ͳΒͳ͍ɻ ŰƄŕŧšŘţƄ:1 ŰƄŕŧšŘţƄ:5
όοναΠζΛখ͘͢͞ΔϝϦοτᶃ •εϧʔϓοτ্͕͕Δʢ߹͕͋Δʣ • ૣظʹग़ՙ͢Δ͜ͱͰࠜઇߏతʹࣄۀΞτΧϜͷ࠷େԽʹد༩͢Δ
όοναΠζΛখ͘͢͞ΔϝϦοτᶃ •εϧʔϓοτ্͕͕Δʢ߹͕͋Δʣ • ૣظʹग़ՙ͢Δ͜ͱͰࠜઇߏతʹࣄۀΞτΧϜͷ࠷େԽʹد༩͢Δ Φʔόʔϔου͕͋ͬͨͱͯ͠ɺՁͷੵΈ্͛Λૣظʹ։࢝͢Δ͜ͱͰΞτΧϜʹد༩͢Δ߹
όοναΠζΛখ͘͢͞ΔϝϦοτᶄ •ෆ࣮֬ੑʹΑΔϜμΛগͳ͘͢Δ ɹ - ϛεෆ۩߹ɺೝࣝҧ͍ɺఆ֎ͷࣄͳͲΛૣظʹݕ͢Δ͜ͱͰɺϜμΛ࠷খԽ͢Δ ※ඇఆܕ࡞ۀɺ৽͍͠औΓΈɺ࣭తͳΒ͖ͭɺ࣮ݧతཁૉ͕ڧ͍ͳͲͷ߹༗ޮ ʢෆ࣮֬ੑ͕͚͘Εେ͖ͳόονͰਐΊͯ͠·͏ํ͕ྑ͍ʣ
ιϑτΣΞ։ൃݱͷ ࠇాथ / ࣄۀՁͱΤϯδχΞϦϯάɾϦιʔεޮੑͱϑϩʔޮੑ ࠇా͞Μࢿྉͷ͜ͷΜͷ
ιϑτΣΞ։ൃݱͷ ࠇాथ / ࣄۀՁͱΤϯδχΞϦϯάɾϦιʔεޮੑͱϑϩʔޮੑ ࠇా͞Μࢿྉͷ͜ͷΜͷ ྫʣCSΞΫγϣϯ࠷େԽΛ͍ͯ͘͠ϓϩμΫτνʔϜ ʮεϧʔϓοτʯʮࡏݿʯʮۀඅ༻ʯΛܭଌɾϞχλϦϯά ※εϧʔϓοτՁΛࢢʹఏڙ͢Δ·Ͱʢto CashʣͳͷͰɺ ։ൃ͚ͩͰͷܭଌͰͳ͘ʮاը~։ൃ~ݕূʯʢBMLαΠΫϧʣͷશମΛର
ιϑτΣΞ։ൃݱͷ ͱ͋ΔϓϩμΫτνʔϜ ੍ʢϘτϧωοΫʣ
ιϑτΣΞ։ൃݱͷ ੍ʢϘτϧωοΫʣ
ιϑτΣΞ։ൃݱͷ
ιϑτΣΞ։ൃݱͷ Before Now ݕূ໘ͷʮՔಇʯՄࢹԽ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ݕূ໘ʢը໘ʣͷՃ։ൃ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ݕূ໘ʢը໘ʣͷՃ։ൃ ᶅ ଞͷશͯΛᶄͷܾఆ ʹैଐͤ͞Δ ᶆ ੍ͷೳྗΛߴΊΔ ᶄ ੍ΛͲ͏పఈ׆༻ ͢Δ͔ܾΊΔ ᶇ ੍͕ղফͨ͠Β ᶃʹΔ ᶃ ੍Λݟ͚ͭΔ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ݕূ໘ʢը໘ʣͷՃ։ൃ ᶅ ଞͷશͯΛᶄͷܾఆ ʹैଐͤ͞Δ ᶆ ੍ͷೳྗΛߴΊΔ ᶄ ੍ΛͲ͏పఈ׆༻ ͢Δ͔ܾΊΔ ᶇ ੍͕ղফͨ͠Β ᶃʹΔ ᶃ ੍Λݟ͚ͭΔ ܧଓతվળαΠΫϧΛճͯ͠ Ҋ݅LT͓Αͦ30%ॖʂʂ
ιϑτΣΞ։ൃݱͷ λεΫA λεΫB λεΫC λεΫD λεΫE λεΫF λεΫG ϓϩδΣΫτόοϑΝ ΫϦςΟΧϧνΣʔϯ
ʢ࡞ۀఔͷैଐؔͱϦιʔεͷैଐؔͷ྆ํΛߟྀʹೖΕͯɺ ࡞ۀॴཁظؒΛܾΊ͍ͯΔ࠷͍࡞ۀͷྲྀΕʣ όοϑΝλεΫຖͰͳ͘PJશମͱͯ࣋ͪ͠ɺ ΫϦςΟΧϧνΣʔϯ্ͷλεΫʹԆ͕ൃੜͨ͠ࡍʹऔΓ่͢
ιϑτΣΞ։ൃݱͷ ϜμΛݮΒͨ͠Γ੍ͷೳྗUPͨ͠Γ͢ΔHowୡ https://www.slideshare.net/andrefaria/mob-programming https://www.amazon.co.jp/DevOps- Handbook-World-Class-Reliability- Organizations-ebook/dp/B09G2GS39R/ https://www.ohmsha.co.jp/book/9784274217883/
·ͱΊ 㾎اۀͷΰʔϧ͓ۚΛ͚ଓ͚Δ͜ͱ 㾎εϧʔϓοτɾࡏݿɾۀඅ༻ 㾎౷ܭతมಈʢΒ͖ͭʣͱґଘతࣄʢͭͳ͕ΓʣͷΈ߹Θͤ 㾎੍ʢϘτϧωοΫʣ͕શମͷεϧʔϓοτΛܾΊΔ 㾎੍ͱඇ੍Λ۠ผͯ͠ɺ੍ʹ͚ͩϑΥʔΧε 㾎ʰ੍ͱඇ੍ͷ۠ผΛ͍ܽͨԿͳΔྗܾ࣮ͯ͠Λ݁ͳ͍ʱ 㾎ଦੑʹؾΛ͚ͭͯܧଓతʹվળ͢Δʢ'PDVTJOH4UFQTʣ 㾎ʰ੍͕ҠΔͱγεςϜҎલͱશ͘ผʹͳΓɺݹ͍ํࣗମ੍͕ʹͳΔʱ 㾎੍ʮѱʯͰͳ͘ʮࣄ࣮ʯɻίϯτϩʔϧ͢Δ͜ͱ͕େࣄɻ
㾎όοναΠζΛখ͘͢͞ΔͱϦʔυλΠϜ͕͘ͳΔεϧʔϓοτ͕͋Δ 㾎࡞ۀ͕࣌ؒ͘ͳΔʢ߹͕͋Δʣɻ 㾎ෆ࣮֬ੑʹΑΔϜμ͕ݮΔɻ
·ͱΊ ΰʔϧυϥοτത࢜ᐌ͘ ʮ50$ΛҰݴͰݴ͑ͱ͍͏ͳΒɺͦΕʮϑΥʔΧεʯ ͩɻ͔͠͠ɺେࣄͳͷɺϑΥʔΧε͢ΔͱɺԿΛ͢ ͖͔͍ͬͯΔͱಉ࣌ʹɺԿΛ͖͢Ͱͳ͍͔ͬͯ ͍Δͱ͍͏͜ͱͩɻͳͥͳΒɺͯ͢ʹϑΥʔΧε͢Δ ͷɺͲΕʹϑΥʔΧε͠ͳ͍ͷͱಉ͔ͩ͡Βͩɻʯ
·ͱΊ ݸผ࠷దͷूੵ㱠શମ࠷ద ΤϯδχΞϦϯάͰ੍Λίϯτϩʔϧͯ͠ ࣄۀՁΛߴΊ͍͖ͯ·͠ΐ͏