Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Bayesian Optimization of Text Representations
Search
Atom
April 08, 2019
Technology
0
130
文献紹介:Bayesian Optimization of Text Representations
長岡技術科学大学
自然言語処理研究室
吉澤亜斗武
Atom
April 08, 2019
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
89
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
93
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
55
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.8k
Graph Convolutional Networks
roraidolaurent
0
230
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
68
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
100
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
210
Other Decks in Technology
See All in Technology
How Do I Contact HP Printer Support? [Full 2025 Guide for U.S. Businesses]
harrry1211
0
120
Geminiとv0による高速プロトタイピング
shinya337
1
270
Zero Data Loss Autonomous Recovery Service サービス概要
oracle4engineer
PRO
2
7.8k
Operating Operator
shhnjk
1
590
開発生産性を測る前にやるべきこと - 組織改善の実践 / Before Measuring Dev Productivity
kaonavi
10
4.6k
american airlines®️ USA Contact Numbers: Complete 2025 Support Guide
supportflight
1
110
AWS認定を取る中で感じたこと
siromi
1
190
Should Our Project Join the CNCF? (Japanese Recap)
whywaita
PRO
0
340
Flutter向けPDFビューア、pdfrxのpdfium WASM対応について
espresso3389
0
130
生成AI活用の組織格差を解消する 〜ビジネス職のCursor導入が開発効率に与えた好循環〜 / Closing the Organizational Gap in AI Adoption
upamune
7
5.3k
DatabricksにOLTPデータベース『Lakebase』がやってきた!
inoutk
0
110
ネットワーク保護はどう変わるのか?re:Inforce 2025最新アップデート解説
tokushun
0
210
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
336
57k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
950
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
4 Signs Your Business is Dying
shpigford
184
22k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.7k
Music & Morning Musume
bryan
46
6.6k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
690
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Done Done
chrislema
184
16k
Transcript
Bayesian Optimization of Text Representations Dani Yogatama, Lingpeng Kong, Noah
A.Smith 文献紹介 2019/4/8 長岡技術科学大学 自然言語処理研究室 吉澤 亜斗武 Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2100–2105, Lisbon, Portugal, 17-21 September 2015.
Abstract ・機械学習の手法において,入力するテキストの表現方法を 逐次的最適化によって自動決定する方法を提案 ・標準的な線形モデルがニューラルネットワークなどの 非線形モデルに迫る性能を発揮 ・特に,トピック分類や感情分析において有効 2
1. Introduction ・機械学習の入力にテキストを入れる際,複数のテキスト 表現があり,その比較実験に時間がかかることが多い. 例)stop words を取り除くか,否か? 単語の重みづけは二値か,あるいは TF-IDF か?
・これらの組み合わせの決定は,パフォーマンスに重要 ・ハイパーパラメータの最適化と同様に扱えるのでは? ・sequential model based optimization (SMBO) を適応する. 3
2. Problem Formulation and Notation ・訓練データ: = . 1 ,
, 1 , ⋯ , . 𝑛𝑛 , , 𝑛𝑛 . 𝑛𝑛 : 番目の入力文書 , 𝑛𝑛 :出力空間(分類先) ・開発データを用いて,適当な指標(分類精度,尤度,F値)を 用いてハイパーパラメータを調整する. ・入力のベクトル表現: ・ = () 4
3. Bayesian Optimization 5
3. Bayesian Optimization 6 Tree-structured Parzen estimator (TPE)
3. Bayesian Optimization 7
4. Experiments 8 ・本手法をロジスティック 回帰に適用した. ・Hyperparameterの推定の 試行は30回行った. ・ベースラインと同じ訓練/ テストを行い,開発データは 訓練データのうち2割を使う.
4. Experiments 9 ・Amazonの家電製品の レビュー ・IMDB の映画のレビュー ・上記の感情の2値分類
4. Experiments 10 ・米国議会の議論のデータセット(賛成,反対の投票の予測)
4. Experiments 11 ・20のトピック分類(20Newsgroups)
4. Experiments 12
5. Discussion 13
6. Conclusion 14 ・ベイズ最適化によってさまざまな分類問題に対して テキスト表現に関する選択の最適化を行った. ・トピック分類と感情分析において標準的な線形モデル (ロジスティック回帰)が既存の最高精度に迫ることを示した.