Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多次元ストリーミング時系列データの効率的なモチーフモニタリングアルゴリズム / Monitor...
Search
Shinya Kato
November 12, 2019
Research
0
40
多次元ストリーミング時系列データの効率的なモチーフモニタリングアルゴリズム / Monitoring Motif on Multi-dimensional Streaming Time-series, presented at DPSWS 2019
Shinya Kato
November 12, 2019
Tweet
Share
More Decks by Shinya Kato
See All by Shinya Kato
PostgreSQLのVisibilityの仕組み
shinyakato_
4
810
pg_bigmをRustで実装する(第50回PostgreSQLアンカンファレンス@オンライン 発表資料)
shinyakato_
0
300
Discord Monitoring for Streaming Time-series, presented at DEXA 2019
shinyakato_
0
34
ストリーミング時系列データの効率的なディスコードモニタリングアルゴリズム / Discord Monitoringfor Streaming Time-series, presented at DEIM 2019
shinyakato_
0
31
Monitoring Range Motif on Streaming Time-Series, presented at DEXA 2018
shinyakato_
0
22
ストリーミング時系列データの効率的なモチーフモニタリングアルゴリズム / Monitoring Range Motif on Streaming Time-Series, presented at DICOMO 2018
shinyakato_
0
180
Other Decks in Research
See All in Research
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
500
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
670
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
480
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
Remote sensing × Multi-modal meta survey
satai
4
710
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
900
Grounding Text Complexity Control in Defined Linguistic Difficulty [Keynote@*SEM2025]
yukiar
0
110
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
Featured
See All Featured
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
330
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
780
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
67
Side Projects
sachag
455
43k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
HDC tutorial
michielstock
1
390
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
The Curse of the Amulet
leimatthew05
1
8.7k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Marketing to machines
jonoalderson
1
4.6k
Transcript
多次元ストリーミング時系列データの 効率的なモチーフモニタリングアルゴリズム 加藤 慎也,天方 大地,原 隆浩 大阪大学 大学院情報科学研究科 マルチメディア工学専攻 原研究室
研究背景(1/3) ⚫近年,多くのストリーミング時系列データが生成 1 家電の消費電力 温室効果ガスの排出量 心電図 異常検知 環境モニタリング 不整脈の発見 分析
研究背景(2/3) ⚫モチーフ - 時系列データを分析する最も重要な技術の一つ - 時系列データの中に繰り返し現れるパターン 2 温室効果ガスの排出量の時系列データ 時系列データの特徴がわかり,予測やイベント検知などに応用可能
研究背景(3/3) ⚫近年,多くの多次元ストリーミング時系列データが生成 3 加速度センサ(3軸),ジャイロセンサ(3軸) の時系列データ データセンタのCPU使用率,メモリ使用率, ディスクI/Oの時系列データ モチーフのみを保存・送信することで 時系列データの特徴を保持したまま, ストレージや通信量を削減
過去のモチーフと現在のモチーフを 比較することで,故障予測や異常検知に活用
問題定義 ⚫多次元ストリーミング時系列データのモチーフモニタリング - 時々刻々と新しい値が追加 - 新しい値が追加されるたびモチーフを更新 4 ⋮ ⋮ モチーフ
𝑡(1) 𝑡(2) 𝑡(𝑑) ⋮ 値が時々刻々と追加 モチーフを常に更新
予備知識(1/3) ⚫1次元 - 時系列データ 𝑡 = 𝑡 1 , 𝑡
2 , ⋯ - サブシーケンス 𝑠𝑝 = 𝑡 𝑝 , 𝑡 𝑝 + 1 , ⋯ , 𝑡 𝑝 + 𝑙 − 1 ⚫多次元 - 多次元時系列データ 𝒕 = 𝑡(1) 𝑡(2) ⋮ 𝑡(𝑑) - 多次元サブシーケンス𝒔𝒑 = 𝑠𝑝 (1) 𝑠𝑝 (2) ⋮ 𝑠𝑝 (𝑑) 5 時間 𝑡 𝑝 𝑙 𝑠𝑝 時間 𝑡(1) 𝑝 𝑙 𝑡(2) 𝑡(𝑑) 𝒔𝒑 ⋮ ⋮
予備知識(2/3) ⚫1次元サブシーケンス間の距離 - 𝑧正規化ユークリッド距離(正規化したサブシーケンス間のユークリッド距離) ⚫𝑘次元におけるサブシーケンス間の距離𝑑 𝑘 (𝒔𝒑 , 𝒔𝒒 )
- 𝑑次元のサブシーケンス𝒔𝒑 ,𝒔𝒒 ,および𝑘 (< 𝑑)が与えられたとき, 各次元のサブシーケンス間の距離が𝑘番目に小さい距離 6 正規化 ユークリッド 距離 𝑠𝑝 (1) 𝑠𝑝 (2) 𝑠𝑝 (3) 𝑠𝑞 (1) 𝑠𝑞 (2) 𝑠𝑞 (3) 1.3 8.4 2.1 𝑠𝑝 (4) 𝑠𝑞 (4) 3.3 𝑑 3 𝒔𝒑 , 𝒔𝒒 = 3.3 𝑘番目に 小さい距離
予備知識(3/3) ⚫類似サブシーケンス - 𝑑 𝑘 𝒔𝒑 , 𝒔𝒒 ≤ 2𝑙
1 − 𝜃 ⟺ 𝒔𝒑 と𝒔𝒒 は類似サブシーケンス • 𝜃 :類似度の閾値 • 𝑙 :モチーフ長 ⚫スコア - 類似サブシーケンスの数 ⚫モチーフ - スコアが最大のサブシーケンス 7 𝒔𝒑 𝒔𝒒 𝒔𝒓 ≤ 2𝑙 1 − 𝜃 ≤ 2𝑙 1 − 𝜃 𝑠𝑐𝑜𝑟𝑒 𝒔𝒑 = 2
ベースラインアルゴリズム ⚫生成されるサブシーケンスと過去の全サブシーケンスと距離計算 - 例)3次元時系列データから長さ5のモチーフをモニタリング 8 新しい値を 取得 多大な時間がかかりリアルタイム性を保証できない.→高速化が必要 生成されるサブシーケンス 距離計算
𝑙 提案アルゴリズム:概要 ⚫アイデア - 𝑘次元におけるサブシーケンス間の距離計算を高速化するには, 各次元における距離計算回数を削減すれば良い. - モチーフ(最大スコアのサブシーケンス)をモニタリングするため, 新たに生成される𝒔𝒏 のスコアがモチーフのスコアを下回れば,𝒔𝒏
はモチーフにならない. ⚫提案アルゴリズムの流れ 9 次元1 ⋯ 𝑙次元空間 次元𝑑 𝑙次元空間 ⋮ 次元1 次元𝑑 各次元ごとにクラスタリング 三角不等式により距離の下界値を計算 𝑠𝑛 (𝑖)
提案アルゴリズム:クラスタリング ⚫中心のサブシーケンスを設定 ⚫それ以外のサブシーケンスは最も近い中心のクラスタに所属 ⚫クラスタ内の点は中心との距離の降順にソート 10
提案アルゴリズム:三角不等式による距離の下界値の取得 ⚫新しいサブシーケンス𝑠𝑛 (𝑖)と中心サブシーケンス𝑠𝑝 (𝑖)と距離計算 ⚫クラスタ内のサブシーケンス𝑠𝑞 (𝑖)と𝑠𝑛 (𝑖)と𝑠𝑝 (𝑖)に三角不等式を適用すると, 𝑑(𝑠𝑛 (𝑖),
𝑠𝑞 (𝑖))の下界値が𝑂(1)で計算可能 ⚫下界値が閾値 2𝑙 1 − 𝜃 を超えた時点で計算を打ち切り 11 𝑠∙ 𝑖 下界値 𝑠 𝑏 𝑖 𝑠𝑐 𝑖 𝑠𝑎 𝑖 𝑠 𝑑 𝑖 𝑠𝑒 𝑖 𝑠𝑝 (𝑖) 𝑠 𝑏 (𝑖) 𝑠𝑎 (𝑖) 𝑠 𝑑 (𝑖) 𝑠𝑐 (𝑖) 𝑠𝑒 (𝑖) 𝑠𝑛 (𝑖) |𝑑(𝑠𝑛 𝑖 , 𝑠𝑝 𝑖 ) − 𝑑(𝑠𝑝 𝑖 , 𝑠 𝑏 (𝑖))| ≤ 2𝑙 1 − 𝜃 |𝑑(𝑠𝑛 𝑖 , 𝑠𝑝 𝑖 ) − 𝑑(𝑠𝑝 𝑖 , 𝑠𝑐 (𝑖))| > 2𝑙 1 − 𝜃 × × ×
提案アルゴリズム:スコアの上界値の取得 ⚫各次元に対して三角不等式による下界値の計算を行った後, 𝑘個以上共通するサブシーケンスの数がスコアの上界値 12 𝑠𝑛 (𝑖)と類似する可能性のあるサブシーケンス 次元1 𝑠𝑎 (1), 𝑠
𝑏 (1), 𝑠𝑐 (1), 𝑠 𝑑 (1), 𝑠𝑒 (1), 𝑠 𝑓 (1), 𝑠𝑔 (1) 次元2 𝑠𝑎 (2), 𝑠𝑒 (2), 𝑠 𝑓 (2), 𝑠𝑔 (2), 𝑠 ℎ (2), 𝑠 𝑖 (2) ⋮ ⋮ 次元𝑑 𝑠𝑎 (𝑑), 𝑠 𝑓 (𝑑), 𝑠𝑔 (𝑑), 𝑠 ℎ (𝑑), 𝑠 𝑖 (𝑑) 𝑘個以上共通 𝒔𝒂 , 𝒔𝒇 , 𝒔𝒈 , 𝒔𝒉 , 𝒔𝒊 𝒔𝒏 のスコアの 上界値は5 𝒔𝒏 のスコアの上界値<モチーフのスコア⇒ 𝒔𝒏 はモチーフにならない.
評価実験 ⚫データセット - Cricket :加速度センサの多次元時系列データ(6次元) - EigenWorms :線虫の動きの多次元時系列データ(6次元) ⚫パラメータ -
𝒕 (時刻) :1,000~100,000 - 𝑙 (モチーフ長) :50, 100, 150, 200 - 𝜃 (閾値) :0.75, 0.8, 0.85, 0.9, 0.95 - 𝑘 (次元数) :2, 3, 4 ⚫評価手法 - ベースラインアルゴリズム - 提案アルゴリズム 13
評価結果:時刻 𝒕 の影響 14 0 2000 4000 6000 8000 10000
0 25000 50000 75000 100000 更新時間 [msec] |𝒕| baseline MMM 0 2000 4000 6000 8000 10000 0 25000 50000 75000 100000 更新時間 [msec] |𝒕| baseline MMM EigenWorms Cricket proposed proposed 提案アルゴリズムは距離計算回数が少ないため高速
0 20000 40000 60000 80000 50 100 150 200 合計更新時間
[sec] 𝑙 baseline MMM 0 20000 40000 60000 80000 50 100 150 200 合計更新時間 [sec] 𝑙 baseline MMM 評価結果:モチーフ長𝒍の影響 15 EigenWorms Cricket proposed proposed 𝒍の増加によって距離計算時間が増加するため,更新時間も増加
評価結果:閾値𝜽の影響 16 0 2000 4000 6000 8000 10000 0 25000
50000 75000 100000 更新時間 [msec] |𝒕| baseline MMM 0 2000 4000 6000 8000 10000 0 25000 50000 75000 100000 更新時間 [msec] |𝒕| baseline MMM EigenWorms Cricket 0 10000 20000 30000 40000 50000 0.75 0.8 0.85 0.9 0.95 合計更新時間 [sec] 𝜃 baseline MMM 0 10000 20000 30000 40000 50000 0.75 0.8 0.85 0.9 0.95 合計更新時間 [sec] 𝜃 baseline MMM proposed proposed 𝜽の増加によって距離の閾値が小さくなり,早期に距離計算の打ち切りが可能
評価結果:次元数𝒌の影響 17 0 2000 4000 6000 8000 10000 0 25000
50000 75000 100000 更新時間 [msec] |𝒕| baseline MMM 0 2000 4000 6000 8000 10000 0 25000 50000 75000 100000 更新時間 [msec] |𝒕| baseline MMM EigenWorms Cricket 0 10000 20000 30000 40000 50000 2 3 4 合計更新時間 [sec] 𝑘 baseline MMM 0 10000 20000 30000 40000 50000 2 3 4 合計更新時間 [sec] 𝑘 baseline MMM proposed proposed 𝒌の増加によって,𝒌次元におけるサブシーケンス間の距離が大きくなり, 全体的にスコアが小さくなり正確な距離計算回数が減少
まとめ ⚫多次元ストリーミング時系列データのモチーフモニタリング - 距離の小さいサブシーケンス同士をクラスタリング - 三角不等式による距離の下界値の取得 - 評価実験から提案アルゴリズムの有効性を確認 18