Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
YOLOv10~v12
Search
TakatoYoshikawa
April 16, 2025
Technology
6
1.6k
YOLOv10~v12
DeNA/Go CV輪講の発表時の資料です。
YOLOv10~v12の改良点を調査し、まとめました。
TakatoYoshikawa
April 16, 2025
Tweet
Share
More Decks by TakatoYoshikawa
See All by TakatoYoshikawa
Segment Anything Modelの最新動向:SAM2とその発展系
tenten0727
0
1.5k
DETR手法の変遷と最新動向(CVPR2025)
tenten0727
4
3.5k
Segment Anything Model 2 (SAM2)
tenten0727
4
2.3k
Other Decks in Technology
See All in Technology
Master Dataグループ紹介資料
sansan33
PRO
1
3.9k
機密情報の漏洩を防げ! Webフロントエンド開発で意識すべき漏洩パターンとその対策
mizdra
PRO
3
640
Digitization部 紹介資料
sansan33
PRO
1
5.9k
コンピューティングリソース何を使えばいいの?
tomokusaba
1
130
設計は最強のプロンプト - AI時代に武器にすべきスキルとは?-
kenichirokimura
1
350
Flutterで実装する実践的な攻撃対策とセキュリティ向上
fujikinaga
1
320
よくわからない人向けの IAM Identity Center とちょっとした落とし穴
kazzpapa3
2
710
クレジットカードの不正を防止する技術
yutadayo
13
6.4k
エンジニア採用と 技術広報の取り組みと注力点/techpr1112
nishiuma
0
130
隙間ツール開発のすすめ / PHP Conference Fukuoka 2025
meihei3
0
330
「データ無い! 腹立つ! 推論する!」から 「データ無い! 腹立つ! データを作る」へ チームでデータを作り、育てられるようにするまで / How can we create, use, and maintain data ourselves?
moznion
6
3.4k
AWS 環境で GitLab Self-managed を試してみた/aws-gitlab-self-managed
emiki
0
350
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1032
470k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
How to Ace a Technical Interview
jacobian
280
24k
Typedesign – Prime Four
hannesfritz
42
2.9k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Designing Experiences People Love
moore
142
24k
Optimizing for Happiness
mojombo
379
70k
How GitHub (no longer) Works
holman
315
140k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
24
1.5k
Transcript
AI 2025.3.21 Takato Yoshikawa 株式会社ディー・エヌ・エー + GO株式会社 YOLOv10~v12
AI 2 ❏ Object Detectionタスクでよく使われる手法YOLO ❏ 性能と効率のバランスが良い ❏ 最近のYOLOはどこを改善しているのか はじめに
https://arxiv.org/pdf/1506.02640
AI 3 01 YOLOv10
AI 4 ❏ YOLOv10の改善 a. 推論時のNMS(Non-Maximum Suppression)による後処理を 不要にする学習方法 → End-to-endのObject
Detectionへ b. 効率と精度を両立させるためのモデルアーキテクチャの改善 YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024] 速度/精度、モデルサイズ/精度のトレードオフで 既存手法を上回る
AI 5 ❏ NMSによる後処理 1. 信頼度がしきい値以下のBBoxを削除 2. 最も信頼度が高いBBoxと他のBBoxとのIoUを計算 3. IoUがしきい値以上のBBoxを削除
❏ NMSの課題点 ❏ End-to-endでないため、精度がしきい値 に依存する ❏ NMSにかかる時間分推論速度が低下する 0.8 0.9 0.7 https://arxiv.org/abs/2304.08069 YOLOv8でそれぞれのしきい値を変化させたときの 精度とNMSにかかる時間の変化 YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 6 ❏ One-to-one Headを追加 ❏ Detection Transformerを参考に 各GTに対して複数のBBox とLossを計算
(従来のYOLOと同様) 各GTに対して1つのBBox とLossを計算 YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 7 ❏ Consistent dual assignment ❏ 学習時は両方のヘッドで最適化 ❏ 推論時はOne-to-one
Headのみ使用 →NMS不要でEnd-to-endの推論が可能に! YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 8 ❏ Consistent matching metric ❏ 各GTに対してどの予測BBoxを割り当てるか ❏ 以下の指標を元に割り当て
❏ One-to-manyはtop n個を割り当て ❏ α, βは分類と位置のタスクの重要度のバランス を取るハイパーパラメータ ❏ One-to-oneとOne-to-manyそれぞれで同じパラメータにすることで 両方のヘッドの最適な予測BBoxが同じになるように学習が進む GTの中にアンカーポイント があるかどうか0/1 分類スコア GTと予測BBox のIoU YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 9 ❏ 効率化のためのモデルアーキテクチャ改善 ❏ クラス分類のConv→Depthwise conv + Pointwise convに変更
❏ 空間ダウンサンプリング時のConv→Pointwise conv + Depthwise convに変更 ❏ 各ステージの最後の畳み込みのランクが低いブロックを より効率的なCIBブロックに置き換える 各ステージ・スケールのランク CIBブロック YOLOv10: Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 10 ❏ 精度向上のためのモデルアーキテクチャ改善 ❏ 大きいカーネルによる畳み込みの導入 ❏ 一部にMulti-head self-attentionを導入 YOLOv10:
Real-Time End-to-End Object Detection [Ao+, NeurIPS2024]
AI 11 02 YOLOv11
AI 12 ❏ YOLOv8同様論文はない ❏ 別の人がまとめた資料やgithubのissueを参照 ❏ 公式の名前はYOLOv11ではなくYOLO11? YOLOv11
AI 13 ❏ アーキテクチャの変更 ❏ (おそらく)YOLOv8をベースに 以下の改良を加える ❏ C2fブロック→C3k2ブロックに ❏
SPPFの後ろにCross Stage Partial with Spatial Attention (C2PSA) ブロックを追加 ❏ 幅広いタスクをサポート ❏ 物体検出、instance segmentation ❏ pose estimation ❏ 画像分類 ❏ Oriented Detection YOLOv11 https://github.com/ultralytics/ultralytics/issues/17102
AI 14 ❏ YOLOv10と比べた性能 ❏ 同じスケールのモデルでmAPやLatencyは少し改善 ❏ パラメータ数やFLOPsはYOLOv10のほうが良い YOLOv11 https://docs.ultralytics.com/ja/models/yolo11/
Model mAPval 50-90 Latenc y T4 params FLOPs YOLO v10-m 51.1% 4.74ms 15.4M 59.1G YOLO v11-m 51.5% 4.7 ms 20.1M 68.0G
AI 15 03 YOLOv12
AI 16 ❏ アーキテクチャの変更 1. Area attention (A2) moduleの導入 2.
Residual Efficient Layer Aggregation Networks(R-ELAN) の導入 3. アーキテクチャの調整 YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+, arXiv2025]
AI 17 ❏ Area Attention (A2) Module ❏ 特徴マップを(H/l, W)
or(H, W/I)に分割してAttentionを計算 ❏ window分割の処理等が不要で、reshapeのみで動作するので高速 ❏ l=4で実装 YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+, arXiv2025]
AI 18 ❏ R-ELAN (Residual Efficient Layer Aggregation Networks) a.
CSPNet ❏ DenseNetの利点を活かしつつ、勾配経路に着目し 最初に特徴マップを分岐(勾配経路を分岐)させることで、 大きいモデルでも安定した学習+計算効率UP b. ELAN ❏ ブロックの途中も分岐させて、短い勾配経路を増やすことで 層を増やしてもより安定した学習になり、精度向上 YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+, arXiv2025]
AI 19 ❏ R-ELAN (Residual Efficient Layer Aggregation Networks) c.
C3K2(YOLOv11で使用) ❏ 1つの大きな畳み込みの代わりに、分岐させた2つの畳み込みを使うことで 計算効率を上げる d. R-ELAN ❏ ELANのConvをA2モジュールにすると収束しづらい(特に大きいモデル) ❏ 特徴マップの分岐はせずに、残差ショートカットを追加 →学習が安定+計算コストやパラメータも削減 YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+, arXiv2025]
AI 20 ❏ アーキテクチャの調整 ❏ backboneの最初の2ステージはYOLOv11と同様 ❏ 残りのC3k2→R-ELANに ❏ backboneの最後の3ブロックもR-ELAN
❏ Attention moduleの調整 ❏ Linear+LNの代わりにConv2d+BN ❏ Positional Encodingの代わりに7x7畳み込みで位置情報を補助 など YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+, arXiv2025]
AI 21 ❏ 性能 YOLOv12: Attention-Centric Real-Time Object Detectors [Yunjie+,
arXiv2025]
AI 22 まとめ ❏ YOLOv10 ❏ NMSを不要にする学習方法でEnd-to-endに ❏ DETRに近い学習方法 ❏
YOLOv11 ❏ アーキテクチャの調整 ❏ YOLOv12 ❏ Attention機構の導入 ❏ それに伴うR-ELANの導入