Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Classiが取り組んできた 機械学習の試行錯誤
Search
tetsuroito
February 24, 2022
Science
0
770
Classiが取り組んできた 機械学習の試行錯誤
2022/02/24(木)に開催された教育・医療業界の機械学習LTで発表した資料です
tetsuroito
February 24, 2022
Tweet
Share
More Decks by tetsuroito
See All by tetsuroito
データエンジニアリングの潮流を俯瞰する
tetsuroito
1
1.7k
事業会社でのデータマネジメントのプラクティス #TechMar
tetsuroito
1
570
Data Engineering Study #9 Classiのデータ組織の歩み
tetsuroito
5
5.5k
Data Engineering Study #3 基調講演_データ分析基盤の浸透に必要なこと
tetsuroito
4
4.5k
Subscription Meetup Vol.2 Opening Talk Slide
tetsuroito
0
110
Data_Pipeline_Casual_Talk_Vol.4_for_Ready.pdf
tetsuroito
0
1.4k
Data Pipeline Casual Talk Vol.3 for Ready #DPCT
tetsuroito
0
1.8k
データサイエンティスト養成読本ビジネス活用編のこぼれ話とエンジニアとデータサイエンティストのコラボについて
tetsuroito
3
3.2k
サブスクリプションミートアップOPトークスライド
tetsuroito
0
4.7k
Other Decks in Science
See All in Science
WCS-LA-2024
lcolladotor
0
120
Analysis-Ready Cloud-Optimized Data for your community and the entire world with Pangeo-Forge
jbusecke
0
110
Sarcoptic Mange
uni_of_nomi
1
110
Презентация программы бакалавриата СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
720
機械学習による確率推定とカリブレーション/probabilistic-calibration-on-classification-model
ktgrstsh
2
240
学術講演会中央大学学員会八王子支部
tagtag
0
230
ICRA2024 速報
rpc
3
5.2k
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
340
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
740
2024-06-16-pydata_london
sofievl
0
530
(2024) Livres, Femmes et Math
mansuy
0
110
ウェーブレットおきもち講座
aikiriao
1
790
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Unsuck your backbone
ammeep
668
57k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
How to Ace a Technical Interview
jacobian
276
23k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
109
49k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Adopting Sorbet at Scale
ufuk
73
9.1k
Faster Mobile Websites
deanohume
305
30k
Speed Design
sergeychernyshev
25
620
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Transcript
Copyright © 2021 Classi Corp. All Rights Reserved. 教育・医療業界の機械学習事例LT 2022/02/24(木)
Classi株式会社 開発本部 本部長 兼 データAI部 部長 伊藤徹郎 Classiが取り組んできた 機械学習の試行錯誤
Copyright © 2021 Classi Corp. All Rights Reserved. 自己紹介 •
名前:伊藤 徹郎 (@tetsuroito) • 所属:Classi株式会社 開発本部|データAI部 • 役職:本部長|部長 • 分野:Educational Technology , Learning Analytics • 著書 ◦ データサイエンティスト養成読本ビジネス活用編 ◦ AI・データ分析プロジェクトのすべて ◦ 実践的データ基盤への処方箋 1
Copyright © 2021 Classi Corp. All Rights Reserved. アジェンダ •
会社概要 • 機械学習の実践例 2
Copyright © 2021 Classi Corp. All Rights Reserved. アジェンダ •
会社概要 • 機械学習の実践例 3
Copyright © 2021 Classi Corp. All Rights Reserved. 4 Classiの会社概要
https://speakerdeck.com/classijp/we-are-hiring より
Copyright © 2021 Classi Corp. All Rights Reserved. 5 Classiのミッション・ビジョン・バリュー
https://speakerdeck.com/classijp/we-are-hiring より 子供の無限の可能性を解き放ち、学びの形を進化させる 先生とともに、学びから学ぶ仕組みを創り、 ワクワクする子どもを増やします • Unlearn & Learn • Love Difference • Make Happen ⁃ 既存の知識を外す勇気。「学び方」を学び続けよう。 失敗してもいい。新しい学びに挑戦しよう。 ⁃ 違いを愛そう。チームを超えて協働しよう。 多様性こそClassiの強み。多様な方がわくわくする。 ⁃ 共に作り、共に実現する。大切なのは、信じて、 やり抜くこと。 Value Mission Vision
Copyright © 2021 Classi Corp. All Rights Reserved. 6 Classiのサービス
https://speakerdeck.com/classijp/we-are-hiring より
Copyright © 2021 Classi Corp. All Rights Reserved. 7 サービス導入実績
https://speakerdeck.com/classijp/we-are-hiring より
Copyright © 2021 Classi Corp. All Rights Reserved. ClassiのデータAI部の目指していること
8 EBE(Evidence-Based-Education) → 先生などの教育者 EBL(Evidence-Based-Learning) → 生徒などの学習者 の実現と運用 つまり教育に必要なデータをサービスを通じて還元し、それぞれのステークホ ルダーが活用する状態 EBE,EBLは ここが自律的に サイクルが 回る状態
Copyright © 2021 Classi Corp. All Rights Reserved. アジェンダ •
会社概要 • 機械学習の実践例 9
Copyright © 2021 Classi Corp. All Rights Reserved. • 自然言語処理を用いた自動作問の実証研究
• アダプティブラーニングの提供と理論 • 音声解析と画像解析を用いた検索精度の改善 • AI-手書きOCRの技術検証 • 声かけのタイプ別で利用率を向上させるA/Bテスト • 問い合わせデータを活用したトピックモデル分析 • 数理最適化技術を用いたスケジュール問題最適化 • 問題の解き直し行動の学力向上への効果検証 など Classiがこれまでに取り組んできた機械学習の取り組み 10
Copyright © 2021 Classi Corp. All Rights Reserved. • 自然言語処理を用いた自動作問の実証研究
• アダプティブラーニングの提供と理論 • 音声解析と画像解析を用いた検索精度の改善 • AI-手書きOCRの技術検証 • 声かけのタイプ別で利用率を向上させるA/Bテスト • 問い合わせデータを活用したトピックモデル分析 • 数理最適化技術を用いたスケジュール問題最適化 • 問題の解き直し行動の学力向上への効果検証 など Classiがこれまでに取り組んできた機械学習の取り組み 11
Copyright © 2021 Classi Corp. All Rights Reserved. • 企画立案
: どんなソリューションで誰の何を解決するか • 技術検証 : ソリューションは適切な範囲で提供可能か • PoC(実データ検証) : 実際にコンセプトは受容されるか • サービス検討 : PoCの結果を元にビジネス化検討 • リリース判断 : ビジネスプランに基づき、サービスリリース判断 AI-手書きOCRの技術検証の進め方 12
Copyright © 2021 Classi Corp. All Rights Reserved. • 企画立案
: どんなソリューションで誰の何を解決するか • 技術検証 : ソリューションは適切な範囲で提供可能か • PoC(実データ検証) : 実際にコンセプトは受容されるか • サービス検討 : PoCの結果を元にビジネス化検討 • リリース判断 : ビジネスプランに基づき、サービスリリース判断 AI-手書きOCRの技術検証の進め方 13
Copyright © 2021 Classi Corp. All Rights Reserved. • 課題
• 学校現場では未だに多くの紙が存在している • 紙は便利だが、管理が煩雑になってしまう • なくしてしまうことがある • ソリューション • 紙に書いた内容を電子化して保存すれば良いのではないか • アプローチする観点 • 学習済みモデルか自社で学習モデルを作るか • 技術要件とユースケースが合うかどうか • コストが見合うかどうか AI-手書きOCRの技術検証について 14
Copyright © 2021 Classi Corp. All Rights Reserved. AI-手書きOCRの3step :
1,前処理 15
Copyright © 2021 Classi Corp. All Rights Reserved. AI-手書きOCRの3step :
2,認識 16
Copyright © 2021 Classi Corp. All Rights Reserved. AI-手書きOCRの3step :
3,補正 17
Copyright © 2021 Classi Corp. All Rights Reserved. • 企画立案
: どんなソリューションで誰の何を解決するか • 技術検証 : ソリューションは適切な範囲で提供可能か • PoC(実データ検証) : 実際にコンセプトは受容されるか • サービス検討 : PoCの結果を元にビジネス化検討 • リリース判断 : ビジネスプランに基づき、サービスリリース判断 AI-手書きOCRの技術検証の進め方 18
Copyright © 2021 Classi Corp. All Rights Reserved. オフライン技術検証のフロー
19 Jupyter上で前処理、AI-OCRで解析、その精度を検証するフローを検討
Copyright © 2021 Classi Corp. All Rights Reserved. 精度検証の方法の検討
20 独自の指標を組み合わせて、精度を検証
Copyright © 2021 Classi Corp. All Rights Reserved. 矩形抽出の検証 21
Copyright © 2021 Classi Corp. All Rights Reserved. • AI-手書きOCRにかける前に画像を前処理しないといけない
• 画像の回転角度の補正 • 台形補正 • 画像サイズと座標の補正 • 文章角度の補正 • コントラスト調整と輪郭の抽出 • 撮影時に入り込んだ影の補正 • etc… 前処理方法の検討 22 前処理で精度を担保することが現実的に無理なため、 ユースケースを限定することで精度向上を目指すことに
Copyright © 2021 Classi Corp. All Rights Reserved. • 手書き文字と印刷文字の混在パターンも存在することが判明
• 活字のタイプ別の読み取り精度の検証 • フォントの違いによる精度検証 • 文章の長さによる精度検証 • 罫線を用意した場合とそうでない場合の精度検証 • マス目の場合のフォーマットの精度検証 など、いろいろなパターンを想定して、精度がどう変化するか検証 活字の読み取り検証 23
Copyright © 2021 Classi Corp. All Rights Reserved. • 企画立案
: どんなソリューションで誰の何を解決するか • 技術検証 : ソリューションは適切な範囲で提供可能か • PoC(実データ検証) : 実際にコンセプトは受容されるか • サービス検討 : PoCの結果を元にビジネス化検討 • リリース判断 : ビジネスプランに基づき、サービスリリース判断 AI-手書きOCRの技術検証の進め方 24
Copyright © 2021 Classi Corp. All Rights Reserved. • 実際に複数のお客様に協力いただき、実験を行った
• 精度指標が約70&ほどだったが、その受け入れも含めて • サービス提供フローを構築し、その業務イメージが現場にFitするかどう か • PoC 25
Copyright © 2021 Classi Corp. All Rights Reserved. • 企画立案
: どんなソリューションで誰の何を解決するか • 技術検証 : ソリューションは適切な範囲で提供可能か • PoC(実データ検証) : 実際にコンセプトは受容されるか • サービス検討 : PoCの結果を元にビジネス化検討 • リリース判断 : ビジネスプランに基づき、サービスリリース判断 AI-手書きOCRの技術検証の進め方 26
Copyright © 2021 Classi Corp. All Rights Reserved. • 今回のPoCでは、運用コストが非常に大きい点
• ユースケースを限定したために活用イメージができなかった点 • 精度自体もケースに応じて不安定な点 • ビジネスモデルをうまく構築できない点 など、いろいろな要因を鑑みて、サービスリリースを見送りました そのため、供養のLTを披露させていただきました! サービス化検討&リリース判断 27
Copyright © 2021 Classi Corp. All Rights Reserved. 宣伝:Classiでは教育業界に機械学習のソリューションを適用したいエンジニアを募集しています
28 https://hrmos.co/pages/classi/jobs?category=1378626424374710272&_ga=2.195036393.490006783.1645439063-165287458.1525770617
Copyright © 2021 Classi Corp. All Rights Reserved. おわり 29
ご静聴 ありがとうございました! 🙏🙏🙏