Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Classiが取り組んできた 機械学習の試行錯誤
Search
tetsuroito
February 24, 2022
Science
0
830
Classiが取り組んできた 機械学習の試行錯誤
2022/02/24(木)に開催された教育・医療業界の機械学習LTで発表した資料です
tetsuroito
February 24, 2022
Tweet
Share
More Decks by tetsuroito
See All by tetsuroito
データエンジニアリングの潮流を俯瞰する
tetsuroito
1
1.8k
事業会社でのデータマネジメントのプラクティス #TechMar
tetsuroito
1
620
Data Engineering Study #9 Classiのデータ組織の歩み
tetsuroito
5
5.7k
Data Engineering Study #3 基調講演_データ分析基盤の浸透に必要なこと
tetsuroito
4
4.7k
Subscription Meetup Vol.2 Opening Talk Slide
tetsuroito
0
130
Data_Pipeline_Casual_Talk_Vol.4_for_Ready.pdf
tetsuroito
0
1.4k
Data Pipeline Casual Talk Vol.3 for Ready #DPCT
tetsuroito
0
1.9k
データサイエンティスト養成読本ビジネス活用編のこぼれ話とエンジニアとデータサイエンティストのコラボについて
tetsuroito
3
3.2k
サブスクリプションミートアップOPトークスライド
tetsuroito
0
4.7k
Other Decks in Science
See All in Science
小杉考司(専修大学)
kosugitti
2
630
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1k
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
750
Celebrate UTIG: Staff and Student Awards 2024
utig
0
620
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
530
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
190
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
890
Pericarditis Comic
camkdraws
0
1.5k
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
260
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
260
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
250
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
150
Featured
See All Featured
Embracing the Ebb and Flow
colly
85
4.6k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.5k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Building Adaptive Systems
keathley
41
2.5k
Product Roadmaps are Hard
iamctodd
PRO
52
11k
Being A Developer After 40
akosma
90
590k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
135
33k
Agile that works and the tools we love
rasmusluckow
328
21k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Become a Pro
speakerdeck
PRO
27
5.2k
Unsuck your backbone
ammeep
670
57k
Transcript
Copyright © 2021 Classi Corp. All Rights Reserved. 教育・医療業界の機械学習事例LT 2022/02/24(木)
Classi株式会社 開発本部 本部長 兼 データAI部 部長 伊藤徹郎 Classiが取り組んできた 機械学習の試行錯誤
Copyright © 2021 Classi Corp. All Rights Reserved. 自己紹介 •
名前:伊藤 徹郎 (@tetsuroito) • 所属:Classi株式会社 開発本部|データAI部 • 役職:本部長|部長 • 分野:Educational Technology , Learning Analytics • 著書 ◦ データサイエンティスト養成読本ビジネス活用編 ◦ AI・データ分析プロジェクトのすべて ◦ 実践的データ基盤への処方箋 1
Copyright © 2021 Classi Corp. All Rights Reserved. アジェンダ •
会社概要 • 機械学習の実践例 2
Copyright © 2021 Classi Corp. All Rights Reserved. アジェンダ •
会社概要 • 機械学習の実践例 3
Copyright © 2021 Classi Corp. All Rights Reserved. 4 Classiの会社概要
https://speakerdeck.com/classijp/we-are-hiring より
Copyright © 2021 Classi Corp. All Rights Reserved. 5 Classiのミッション・ビジョン・バリュー
https://speakerdeck.com/classijp/we-are-hiring より 子供の無限の可能性を解き放ち、学びの形を進化させる 先生とともに、学びから学ぶ仕組みを創り、 ワクワクする子どもを増やします • Unlearn & Learn • Love Difference • Make Happen ⁃ 既存の知識を外す勇気。「学び方」を学び続けよう。 失敗してもいい。新しい学びに挑戦しよう。 ⁃ 違いを愛そう。チームを超えて協働しよう。 多様性こそClassiの強み。多様な方がわくわくする。 ⁃ 共に作り、共に実現する。大切なのは、信じて、 やり抜くこと。 Value Mission Vision
Copyright © 2021 Classi Corp. All Rights Reserved. 6 Classiのサービス
https://speakerdeck.com/classijp/we-are-hiring より
Copyright © 2021 Classi Corp. All Rights Reserved. 7 サービス導入実績
https://speakerdeck.com/classijp/we-are-hiring より
Copyright © 2021 Classi Corp. All Rights Reserved. ClassiのデータAI部の目指していること
8 EBE(Evidence-Based-Education) → 先生などの教育者 EBL(Evidence-Based-Learning) → 生徒などの学習者 の実現と運用 つまり教育に必要なデータをサービスを通じて還元し、それぞれのステークホ ルダーが活用する状態 EBE,EBLは ここが自律的に サイクルが 回る状態
Copyright © 2021 Classi Corp. All Rights Reserved. アジェンダ •
会社概要 • 機械学習の実践例 9
Copyright © 2021 Classi Corp. All Rights Reserved. • 自然言語処理を用いた自動作問の実証研究
• アダプティブラーニングの提供と理論 • 音声解析と画像解析を用いた検索精度の改善 • AI-手書きOCRの技術検証 • 声かけのタイプ別で利用率を向上させるA/Bテスト • 問い合わせデータを活用したトピックモデル分析 • 数理最適化技術を用いたスケジュール問題最適化 • 問題の解き直し行動の学力向上への効果検証 など Classiがこれまでに取り組んできた機械学習の取り組み 10
Copyright © 2021 Classi Corp. All Rights Reserved. • 自然言語処理を用いた自動作問の実証研究
• アダプティブラーニングの提供と理論 • 音声解析と画像解析を用いた検索精度の改善 • AI-手書きOCRの技術検証 • 声かけのタイプ別で利用率を向上させるA/Bテスト • 問い合わせデータを活用したトピックモデル分析 • 数理最適化技術を用いたスケジュール問題最適化 • 問題の解き直し行動の学力向上への効果検証 など Classiがこれまでに取り組んできた機械学習の取り組み 11
Copyright © 2021 Classi Corp. All Rights Reserved. • 企画立案
: どんなソリューションで誰の何を解決するか • 技術検証 : ソリューションは適切な範囲で提供可能か • PoC(実データ検証) : 実際にコンセプトは受容されるか • サービス検討 : PoCの結果を元にビジネス化検討 • リリース判断 : ビジネスプランに基づき、サービスリリース判断 AI-手書きOCRの技術検証の進め方 12
Copyright © 2021 Classi Corp. All Rights Reserved. • 企画立案
: どんなソリューションで誰の何を解決するか • 技術検証 : ソリューションは適切な範囲で提供可能か • PoC(実データ検証) : 実際にコンセプトは受容されるか • サービス検討 : PoCの結果を元にビジネス化検討 • リリース判断 : ビジネスプランに基づき、サービスリリース判断 AI-手書きOCRの技術検証の進め方 13
Copyright © 2021 Classi Corp. All Rights Reserved. • 課題
• 学校現場では未だに多くの紙が存在している • 紙は便利だが、管理が煩雑になってしまう • なくしてしまうことがある • ソリューション • 紙に書いた内容を電子化して保存すれば良いのではないか • アプローチする観点 • 学習済みモデルか自社で学習モデルを作るか • 技術要件とユースケースが合うかどうか • コストが見合うかどうか AI-手書きOCRの技術検証について 14
Copyright © 2021 Classi Corp. All Rights Reserved. AI-手書きOCRの3step :
1,前処理 15
Copyright © 2021 Classi Corp. All Rights Reserved. AI-手書きOCRの3step :
2,認識 16
Copyright © 2021 Classi Corp. All Rights Reserved. AI-手書きOCRの3step :
3,補正 17
Copyright © 2021 Classi Corp. All Rights Reserved. • 企画立案
: どんなソリューションで誰の何を解決するか • 技術検証 : ソリューションは適切な範囲で提供可能か • PoC(実データ検証) : 実際にコンセプトは受容されるか • サービス検討 : PoCの結果を元にビジネス化検討 • リリース判断 : ビジネスプランに基づき、サービスリリース判断 AI-手書きOCRの技術検証の進め方 18
Copyright © 2021 Classi Corp. All Rights Reserved. オフライン技術検証のフロー
19 Jupyter上で前処理、AI-OCRで解析、その精度を検証するフローを検討
Copyright © 2021 Classi Corp. All Rights Reserved. 精度検証の方法の検討
20 独自の指標を組み合わせて、精度を検証
Copyright © 2021 Classi Corp. All Rights Reserved. 矩形抽出の検証 21
Copyright © 2021 Classi Corp. All Rights Reserved. • AI-手書きOCRにかける前に画像を前処理しないといけない
• 画像の回転角度の補正 • 台形補正 • 画像サイズと座標の補正 • 文章角度の補正 • コントラスト調整と輪郭の抽出 • 撮影時に入り込んだ影の補正 • etc… 前処理方法の検討 22 前処理で精度を担保することが現実的に無理なため、 ユースケースを限定することで精度向上を目指すことに
Copyright © 2021 Classi Corp. All Rights Reserved. • 手書き文字と印刷文字の混在パターンも存在することが判明
• 活字のタイプ別の読み取り精度の検証 • フォントの違いによる精度検証 • 文章の長さによる精度検証 • 罫線を用意した場合とそうでない場合の精度検証 • マス目の場合のフォーマットの精度検証 など、いろいろなパターンを想定して、精度がどう変化するか検証 活字の読み取り検証 23
Copyright © 2021 Classi Corp. All Rights Reserved. • 企画立案
: どんなソリューションで誰の何を解決するか • 技術検証 : ソリューションは適切な範囲で提供可能か • PoC(実データ検証) : 実際にコンセプトは受容されるか • サービス検討 : PoCの結果を元にビジネス化検討 • リリース判断 : ビジネスプランに基づき、サービスリリース判断 AI-手書きOCRの技術検証の進め方 24
Copyright © 2021 Classi Corp. All Rights Reserved. • 実際に複数のお客様に協力いただき、実験を行った
• 精度指標が約70&ほどだったが、その受け入れも含めて • サービス提供フローを構築し、その業務イメージが現場にFitするかどう か • PoC 25
Copyright © 2021 Classi Corp. All Rights Reserved. • 企画立案
: どんなソリューションで誰の何を解決するか • 技術検証 : ソリューションは適切な範囲で提供可能か • PoC(実データ検証) : 実際にコンセプトは受容されるか • サービス検討 : PoCの結果を元にビジネス化検討 • リリース判断 : ビジネスプランに基づき、サービスリリース判断 AI-手書きOCRの技術検証の進め方 26
Copyright © 2021 Classi Corp. All Rights Reserved. • 今回のPoCでは、運用コストが非常に大きい点
• ユースケースを限定したために活用イメージができなかった点 • 精度自体もケースに応じて不安定な点 • ビジネスモデルをうまく構築できない点 など、いろいろな要因を鑑みて、サービスリリースを見送りました そのため、供養のLTを披露させていただきました! サービス化検討&リリース判断 27
Copyright © 2021 Classi Corp. All Rights Reserved. 宣伝:Classiでは教育業界に機械学習のソリューションを適用したいエンジニアを募集しています
28 https://hrmos.co/pages/classi/jobs?category=1378626424374710272&_ga=2.195036393.490006783.1645439063-165287458.1525770617
Copyright © 2021 Classi Corp. All Rights Reserved. おわり 29
ご静聴 ありがとうございました! 🙏🙏🙏