Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
レポート化の落とし穴
Search
けんご
August 18, 2017
Research
0
170
レポート化の落とし穴
けんご
August 18, 2017
Tweet
Share
More Decks by けんご
See All by けんご
いいたいことちゃんという
tkengo
0
430
スタートアップで役割をまっとうする技術
tkengo
0
180
TableauやLookerだけじゃない!QuickSightで作る顧客向けダッシュボード
tkengo
1
300
toypoインフラリプレースのお話
tkengo
0
54
機械学習を始めるための第一歩
tkengo
0
270
PHP and sometimes Machine Learning
tkengo
3
1.2k
機械学習と数学とプログラマのための数学勉強会
tkengo
0
580
CNNによるテキスト分類
tkengo
1
48k
指数の裏側
tkengo
1
510
Other Decks in Research
See All in Research
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
330
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
230
NLP Colloquium
junokim
1
190
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
140
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
250
SSII2025 [TS1] 光学・物理原理に基づく深層画像生成
ssii
PRO
4
4.1k
投資戦略202508
pw
0
350
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
460
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
1k
電力システム最適化入門
mickey_kubo
1
860
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
4
1k
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
2.3k
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
140
7.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
Building an army of robots
kneath
306
46k
Embracing the Ebb and Flow
colly
87
4.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Optimizing for Happiness
mojombo
379
70k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Scaling GitHub
holman
462
140k
The Art of Programming - Codeland 2020
erikaheidi
55
13k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Transcript
@tkengo レポート化の落とし穴 2017.08.17 第2回 意思決定のためのデータ分析勉強会
自己紹介 立石 賢吾 LINE Fukuoka株式会社 データ分析チーム RubyとJavaScriptが好きです Twitter Github Blog
@tkengo @tkengo http://tkengo.github.io/
自己紹介 やさしく学ぶ 機械学習を理解するための数学の基本 2017/9/20(水) より Amazon で発売開始予定 https://www.amazon.co.jp/dp/4839963525/ 読んでみたい人、興味がある人、もしいたらこのあとtkengoまで。 可能であれば発売後に献本差し上げますので是非ブログやSNSなどで
感想を書いて広めてください!
閑話休題
データ分析について 能動的に、自ら動いてアクションを提示 受動的に、依頼を受けて現状分析
データ分析について 能動的に、自ら動いてアクションを提示 受動的に、依頼を受けて現状分析 今日は ここの話
分析サイクル スポット 分析 分析結果 理解 定常化 (レポート化) 分析依頼
分析サイクル スポット 分析 分析結果 理解 定常化 (レポート化) 分析依頼 施策の実施した際の効果測定や、次の施策の実施のために分析依頼をもらう
分析サイクル スポット 分析 分析結果 理解 定常化 (レポート化) 分析依頼 基本的にSQLで結果を集計して、Excelなどで可視化 スポットなので多少重いクエリが流れるとしても、待つのは自分なので許容範囲
分析サイクル スポット 分析 分析結果 理解 定常化 (レポート化) 分析依頼 現状理解及び結果を加味して次回施策や新機能の考察 または追加の分析案件があればさらに対応する
分析サイクル スポット 分析 分析結果 理解 定常化 (レポート化) 分析依頼 分析結果が今後も有用であればTableauなどのツールでレポート化 基本的には企画者やマーケターが定期的にみるので表示が1分とかかかるとNG
重いクエリに対してはレポート化のためにETL必須
依頼されたことを そのままやればいい?
いきなり完璧なレポートを 求めてくる 問題点1
問題点1 •サービスが始まる前から求められるレポート化 •まあどうなるかはわかんないけど・・・ •初動を見たいから・・・ •最初から数字が取れてた方が便利だし・・・ •母数が少なくあまり動きが無いのにレポート化
すべての数字を完璧に 取れるように求めてくる 問題点2
問題点2 •KPI多すぎ問題 •クリック数 / クリックUU / 購入数 / 購入UU /
PU / 金額合計 / ARPU / ARRPU •他 ◦◦数 / ◦◦UU などが数十個 •軸多すぎ問題 •日付 / 時間 / 性別 / デバイス / 有料・無料 / 商品カテゴリ / 商品ID / 他 •すべて優先度高問題 •優先度とは •ハイハイデスヨネー
うまく伝わらない企画者の想い 問題点3
問題点3 •いつから企画者が自分の頭の中の全てを僕達に話してくれている と錯覚していた? •10の伝えたいことのうち7か8だけ伝わればいい方 •5しか伝わらないこともある •頭の中を資料にアウトプットしてくれても、そのアウトプット自体が頭の 中と間違っていることも(!?) •想いがずれていると可視化する際の障害にもなる
全部そのままやると 大変なことに…
レポート化の落とし穴 •そのレポート本当に必要? •軸とKPI多すぎて見にくすぎでは? •母数が数十のデータに対してそんなに複雑な軸いる? •あなた分析者に対するコスト意識ありますか? •夢が大きすぎない?
レポート化の落とし穴 •結局は依頼を受けるにしても自ら考える必要はある •サービスの性質と施策の意図を確実に理解する •自分も企画者になったつもりで自分が欲しいものを考える •現状分析で満足しない。アクションに活かせない分析は無価値
コミュニケーション大事
おわり
宣伝スライド やさしく学ぶ 機械学習を理解するための数学の基本 2017/9/20(水) より Amazon で発売開始予定 https://www.amazon.co.jp/dp/4839963525/ 読んでみたい人、興味がある人、もしいたらこのあとtkengoまで。 可能であれば発売後に献本差し上げますので是非ブログやSNSなどで
感想を書いて広めてください!