Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CNNによるテキスト分類
Search
けんご
March 02, 2016
Technology
1
48k
CNNによるテキスト分類
けんご
March 02, 2016
Tweet
Share
More Decks by けんご
See All by けんご
いいたいことちゃんという
tkengo
0
430
スタートアップで役割をまっとうする技術
tkengo
0
180
TableauやLookerだけじゃない!QuickSightで作る顧客向けダッシュボード
tkengo
1
300
toypoインフラリプレースのお話
tkengo
0
57
機械学習を始めるための第一歩
tkengo
0
280
レポート化の落とし穴
tkengo
0
170
PHP and sometimes Machine Learning
tkengo
3
1.2k
機械学習と数学とプログラマのための数学勉強会
tkengo
0
580
指数の裏側
tkengo
1
520
Other Decks in Technology
See All in Technology
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
280
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
10
75k
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
330
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
380
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
230
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
240
S3アクセス制御の設計ポイント
tommy0124
3
200
エンジニアが主導できる組織づくり ー 製品と事業を進化させる体制へのシフト
ueokande
1
100
LLMを搭載したプロダクトの品質保証の模索と学び
qa
0
1.1k
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
230
Evolución del razonamiento matemático de GPT-4.1 a GPT-5 - Data Aventura Summit 2025 & VSCode DevDays
lauchacarro
0
210
Django's GeneratedField by example - DjangoCon US 2025
pauloxnet
0
150
Featured
See All Featured
Practical Orchestrator
shlominoach
190
11k
Site-Speed That Sticks
csswizardry
10
820
Navigating Team Friction
lara
189
15k
The Invisible Side of Design
smashingmag
301
51k
Embracing the Ebb and Flow
colly
87
4.8k
Being A Developer After 40
akosma
90
590k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Writing Fast Ruby
sferik
628
62k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Facilitating Awesome Meetings
lara
55
6.5k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Transcript
2016.03.02 @tkengo CNNによる テキスト分類
目次 • 畳み込みニューラルネット(CNN) • CNNのNLPへの適用 • テキスト分類デモ • 参考
畳み込み ニューラルネット
畳み込みニューラルネット • 人間の視覚野をシミュレーション • 画像認識の分野で広く使われる • カーネルをスライドさせて特徴マップを得る
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは?
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは? ➜いくつかの実験で良い結果が出ている ➜このあと説明します ➜使われていると思う。現時点ではCNNが全て
において万能だという結論ではないと思う
CNNのNLPへの適用
CNNのNLPへの適用 • テキスト内の単語をベクトル化する必要がある • BoWモデルやWordEmbeddingモデル • BoWは単純だけど各単語間の関連が皆無 • WordEmbeddingは話題のword2vec vector('Paris')
- vector('France') + vector(‘Italy’) vector(‘Roma’) vector('king') - vector('man') + vector(‘woman') vector('queen') ⇡ ⇡
CNNのNLPへの適用 • 分類したいテキストに含まれる単語をベクトル化 • それを並べた行列がそのテキストの表現 • 単語数が一致しない場合はパディングで埋める 犬も猫も好き 犬 も
猫 も 好き ʜ ʜ ʜ ʜ ʜ トトロが好き トトロ が 好き <PAD> <PAD> ʜ ʜ ʜ ʜ ʜ “トトロ”のベクトル “犬”のベクトル
CNNのNLPへの適用 • カーネルの幅は単語ベクトルと同じ幅に固定 • カーネルの高さは2-5くらいの範囲 • 1単語ずつスライドさせて畳み込んでいく
ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ
CNNのNLPへの適用 • 畳み込み層の後にはプーリング層も配置 • 活性化関数ReLUを適用した後に全結合層 • 最後にsoftmax関数を適用
テキスト分類デモ
モチベーション • LINE占い内で悩み相談所というサービスを展開 • 悩み内容にはそれぞれカテゴリが紐付いている • 悩み内容のカテゴリを自動分類できないかな? カテゴリ
単純なNNでテキスト分類 • 最初は隠れ層が1つの単純な順伝播型で実装 • 単語ベクトルにはBoWモデルを使用 • 130,000件のデータを数時間かけて学習 • 65%〜70%程度の精度。もう少し精度ほしい
CNNでテキスト分類 • 全部で5層のディープニューラルネット • 単語ベクトルにはWordEmbeddingモデルを使用 • 130,000件のデータを20時間かけて学習 • 75%〜80%程度の精度
参考
参考 • Convolutional Neural Networks for Sentence Classification • http://arxiv.org/pdf/1408.5882v2.pdf
• word2vec • https://code.google.com/archive/p/word2vec/ • 実装 • https://github.com/tkengo/tf/blob/master/cnn_text_classification/train.py • TensorFlow • https://www.tensorflow.org/