$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CNNによるテキスト分類
Search
けんご
March 02, 2016
Technology
1
48k
CNNによるテキスト分類
けんご
March 02, 2016
Tweet
Share
More Decks by けんご
See All by けんご
いいたいことちゃんという
tkengo
0
440
スタートアップで役割をまっとうする技術
tkengo
0
190
TableauやLookerだけじゃない!QuickSightで作る顧客向けダッシュボード
tkengo
1
320
toypoインフラリプレースのお話
tkengo
0
69
機械学習を始めるための第一歩
tkengo
0
290
レポート化の落とし穴
tkengo
0
180
PHP and sometimes Machine Learning
tkengo
3
1.2k
機械学習と数学とプログラマのための数学勉強会
tkengo
0
600
指数の裏側
tkengo
1
560
Other Decks in Technology
See All in Technology
2025年 開発生産「可能」性向上報告 サイロ解消からチームが能動性を獲得するまで/ 20251216 Naoki Takahashi
shift_evolve
PRO
2
210
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9.9k
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
360
コンテキスト情報を活用し個社最適化されたAI Agentを実現する4つのポイント
kworkdev
PRO
1
1.8k
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.4k
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
1
380
日本Rubyの会: これまでとこれから
snoozer05
PRO
5
220
なぜ あなたはそんなに re:Invent に行くのか?
miu_crescent
PRO
0
130
さくらのクラウド開発ふりかえり2025
kazeburo
2
320
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
380
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
370
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
1.6k
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Utilizing Notion as your number one productivity tool
mfonobong
2
190
Into the Great Unknown - MozCon
thekraken
40
2.2k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Darren the Foodie - Storyboard
khoart
PRO
0
1.9k
Technical Leadership for Architectural Decision Making
baasie
0
180
Docker and Python
trallard
47
3.7k
So, you think you're a good person
axbom
PRO
0
1.8k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
92
Making Projects Easy
brettharned
120
6.5k
Building AI with AI
inesmontani
PRO
1
570
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Transcript
2016.03.02 @tkengo CNNによる テキスト分類
目次 • 畳み込みニューラルネット(CNN) • CNNのNLPへの適用 • テキスト分類デモ • 参考
畳み込み ニューラルネット
畳み込みニューラルネット • 人間の視覚野をシミュレーション • 画像認識の分野で広く使われる • カーネルをスライドさせて特徴マップを得る
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは?
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは? ➜いくつかの実験で良い結果が出ている ➜このあと説明します ➜使われていると思う。現時点ではCNNが全て
において万能だという結論ではないと思う
CNNのNLPへの適用
CNNのNLPへの適用 • テキスト内の単語をベクトル化する必要がある • BoWモデルやWordEmbeddingモデル • BoWは単純だけど各単語間の関連が皆無 • WordEmbeddingは話題のword2vec vector('Paris')
- vector('France') + vector(‘Italy’) vector(‘Roma’) vector('king') - vector('man') + vector(‘woman') vector('queen') ⇡ ⇡
CNNのNLPへの適用 • 分類したいテキストに含まれる単語をベクトル化 • それを並べた行列がそのテキストの表現 • 単語数が一致しない場合はパディングで埋める 犬も猫も好き 犬 も
猫 も 好き ʜ ʜ ʜ ʜ ʜ トトロが好き トトロ が 好き <PAD> <PAD> ʜ ʜ ʜ ʜ ʜ “トトロ”のベクトル “犬”のベクトル
CNNのNLPへの適用 • カーネルの幅は単語ベクトルと同じ幅に固定 • カーネルの高さは2-5くらいの範囲 • 1単語ずつスライドさせて畳み込んでいく
ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ
CNNのNLPへの適用 • 畳み込み層の後にはプーリング層も配置 • 活性化関数ReLUを適用した後に全結合層 • 最後にsoftmax関数を適用
テキスト分類デモ
モチベーション • LINE占い内で悩み相談所というサービスを展開 • 悩み内容にはそれぞれカテゴリが紐付いている • 悩み内容のカテゴリを自動分類できないかな? カテゴリ
単純なNNでテキスト分類 • 最初は隠れ層が1つの単純な順伝播型で実装 • 単語ベクトルにはBoWモデルを使用 • 130,000件のデータを数時間かけて学習 • 65%〜70%程度の精度。もう少し精度ほしい
CNNでテキスト分類 • 全部で5層のディープニューラルネット • 単語ベクトルにはWordEmbeddingモデルを使用 • 130,000件のデータを20時間かけて学習 • 75%〜80%程度の精度
参考
参考 • Convolutional Neural Networks for Sentence Classification • http://arxiv.org/pdf/1408.5882v2.pdf
• word2vec • https://code.google.com/archive/p/word2vec/ • 実装 • https://github.com/tkengo/tf/blob/master/cnn_text_classification/train.py • TensorFlow • https://www.tensorflow.org/