Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CNNによるテキスト分類
Search
けんご
March 02, 2016
Technology
1
48k
CNNによるテキスト分類
けんご
March 02, 2016
Tweet
Share
More Decks by けんご
See All by けんご
いいたいことちゃんという
tkengo
0
430
スタートアップで役割をまっとうする技術
tkengo
0
180
TableauやLookerだけじゃない!QuickSightで作る顧客向けダッシュボード
tkengo
1
310
toypoインフラリプレースのお話
tkengo
0
62
機械学習を始めるための第一歩
tkengo
0
280
レポート化の落とし穴
tkengo
0
180
PHP and sometimes Machine Learning
tkengo
3
1.2k
機械学習と数学とプログラマのための数学勉強会
tkengo
0
590
指数の裏側
tkengo
1
540
Other Decks in Technology
See All in Technology
ラスベガスの歩き方 2025年版(re:Invent 事前勉強会)
junjikoide
0
220
IoTLT@ストラタシスジャパン_20251021
norioikedo
0
140
Building a cloud native business on open source
lizrice
0
180
オブザーバビリティが育むシステム理解と好奇心
maruloop
2
1.3k
SQLAlchemy の select(User).where(User.id =="123") を理解してみる/sqlalchemy deep dive
3l4l5
3
490
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
1
580
OPENLOGI Company Profile for engineer
hr01
1
45k
Azure Well-Architected Framework入門
tomokusaba
1
130
個人でデジタル庁の デザインシステムをVue.jsで 作っている話
nishiharatsubasa
3
5.1k
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
250
Biz職でもDifyでできる! 「触らないAIワークフロー」を実現する方法
igarashikana
7
3.5k
ヘンリー会社紹介資料(エンジニア向け) / company deck for engineer
henryofficial
0
400
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Building Applications with DynamoDB
mza
96
6.7k
Speed Design
sergeychernyshev
32
1.2k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
890
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Agile that works and the tools we love
rasmusluckow
331
21k
The World Runs on Bad Software
bkeepers
PRO
72
11k
Visualization
eitanlees
149
16k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
Transcript
2016.03.02 @tkengo CNNによる テキスト分類
目次 • 畳み込みニューラルネット(CNN) • CNNのNLPへの適用 • テキスト分類デモ • 参考
畳み込み ニューラルネット
畳み込みニューラルネット • 人間の視覚野をシミュレーション • 画像認識の分野で広く使われる • カーネルをスライドさせて特徴マップを得る
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは?
畳み込みニューラルネット • NLPへCNNを適用してうまくいくのか? • そもそもどうやって適用するのか? • NLPでは既にRNNが良く使われているのでは? ➜いくつかの実験で良い結果が出ている ➜このあと説明します ➜使われていると思う。現時点ではCNNが全て
において万能だという結論ではないと思う
CNNのNLPへの適用
CNNのNLPへの適用 • テキスト内の単語をベクトル化する必要がある • BoWモデルやWordEmbeddingモデル • BoWは単純だけど各単語間の関連が皆無 • WordEmbeddingは話題のword2vec vector('Paris')
- vector('France') + vector(‘Italy’) vector(‘Roma’) vector('king') - vector('man') + vector(‘woman') vector('queen') ⇡ ⇡
CNNのNLPへの適用 • 分類したいテキストに含まれる単語をベクトル化 • それを並べた行列がそのテキストの表現 • 単語数が一致しない場合はパディングで埋める 犬も猫も好き 犬 も
猫 も 好き ʜ ʜ ʜ ʜ ʜ トトロが好き トトロ が 好き <PAD> <PAD> ʜ ʜ ʜ ʜ ʜ “トトロ”のベクトル “犬”のベクトル
CNNのNLPへの適用 • カーネルの幅は単語ベクトルと同じ幅に固定 • カーネルの高さは2-5くらいの範囲 • 1単語ずつスライドさせて畳み込んでいく
ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ ʜ
CNNのNLPへの適用 • 畳み込み層の後にはプーリング層も配置 • 活性化関数ReLUを適用した後に全結合層 • 最後にsoftmax関数を適用
テキスト分類デモ
モチベーション • LINE占い内で悩み相談所というサービスを展開 • 悩み内容にはそれぞれカテゴリが紐付いている • 悩み内容のカテゴリを自動分類できないかな? カテゴリ
単純なNNでテキスト分類 • 最初は隠れ層が1つの単純な順伝播型で実装 • 単語ベクトルにはBoWモデルを使用 • 130,000件のデータを数時間かけて学習 • 65%〜70%程度の精度。もう少し精度ほしい
CNNでテキスト分類 • 全部で5層のディープニューラルネット • 単語ベクトルにはWordEmbeddingモデルを使用 • 130,000件のデータを20時間かけて学習 • 75%〜80%程度の精度
参考
参考 • Convolutional Neural Networks for Sentence Classification • http://arxiv.org/pdf/1408.5882v2.pdf
• word2vec • https://code.google.com/archive/p/word2vec/ • 実装 • https://github.com/tkengo/tf/blob/master/cnn_text_classification/train.py • TensorFlow • https://www.tensorflow.org/