Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Transformer-based World Models Are Happy...
Search
tt1717
January 31, 2024
Research
0
140
[論文紹介] Transformer-based World Models Are Happy With 100k Interactions
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
January 31, 2024
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on Pokemon AI
tt1717
0
26
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
50
[論文サーベイ] Survey on GPT for Games
tt1717
0
48
[論文サーベイ] Survey on World Models for Games
tt1717
0
93
[論文サーベイ] Survey on Linguistic Explanations in Deep Reinforcement Learning of Atari Tasks
tt1717
0
53
[論文サーベイ] Survey on Visualization in Deep Reinforcement Learning of Game Tasks 2
tt1717
0
52
[論文サーベイ] Survey on VLM and Reinforcement Learning in Game Tasks (Minecraft)
tt1717
0
100
[論文紹介] RT-1: Robotics Transformer for Real-World Control at Scale
tt1717
0
110
[論文紹介] Chip Placement with Deep Reinforcement Learning
tt1717
0
66
Other Decks in Research
See All in Research
Security, Privacy, and Trust in Generative AI
tsubasashi
0
120
ドローンやICTを活用した持続可能なまちづくりに関する研究
nro2daisuke
0
210
言語モデルLUKEを経済の知識に特化させたモデル「UBKE-LUKE」について
petter0201
0
370
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
440
Remote Sensing Vision-Language Foundation Models without Annotations via Ground Remote Alignment
satai
3
440
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
590
Weekly AI Agents News! 2月号 アーカイブ
masatoto
1
160
プロシェアリング白書2025_PROSHARING_REPORT_2025
circulation
1
630
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
140
サーブレシーブ成功率は勝敗に影響するか?
vball_panda
0
650
20250226 NLP colloquium: "SoftMatcha: 10億単語規模コーパス検索のための柔らかくも高速なパターンマッチャー"
de9uch1
0
390
한국어 오픈소스 거대 언어 모델의 가능성: 새로운 시대의 언어 이해와 생성
inureyes
PRO
0
330
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Building Adaptive Systems
keathley
41
2.5k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
The Pragmatic Product Professional
lauravandoore
33
6.6k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Fontdeck: Realign not Redesign
paulrobertlloyd
84
5.5k
BBQ
matthewcrist
88
9.6k
Why Our Code Smells
bkeepers
PRO
336
57k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
What's in a price? How to price your products and services
michaelherold
245
12k
Transcript
どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・Atari 100kベンチマークを使用して評価し,「中央値,四分位平 均 (IQM),平均スコア」で高い性能を示した ・予測された報酬を世界モデルにフィードバックすることで,現在 どれだけの報酬が出力されているかという情報を提供する
・Dreamerv2の損失関数を修正して,関係するエントロピー項とク ロスエントロピー項の相対的な重みを微調整した ・強化学習におけるサンプル効率の向上を目指し,Transformer-XL アーキテクチャを基にした新しい自己回帰型の世界モデル (TWM)を 提案した ・提案されたTWMは,Atari 100kベンチマークで既存のモデルフ リー or モデルベースの強化学習アルゴリズムを上回る性能を示した Transformer-based World Models Are Happy With 100k Interactions (ICLR 2023) Jan Robine, Marc Höftmann, Tobias Uelwer, Stefan Harmeling https://arxiv.org/abs/2303.07109 2024/01/31 論文を表す画像 被引用数:13 1/9 ・Transformer-XLアーキテクチャを活用することで長期依存関係を 学習し,計算効率を保持している ・TWMは推論時にTransformerを必要としないため,計算コストを 削減している
❖ 観測のエンコード: ➢ 観測otはCNNを使用して潜在状態ztに変換 ❖ 潜在状態,行動,報酬の埋め込み: ➢ 生成された潜在状態zt,行動at,報酬rtはそれぞれ線形埋め込みを通して 処理される ❖
Transformerの活用: ➢ 埋め込まれた潜在状態,行動,報酬はTransformerに入力され,各時間に おいて決定論的な隠れ状態htを計算する モデル 2/9
モデル 3/9 ❖ MLPを使用した予測 ➢ Transformerによって計算された隠れ状態htを元に,MLPを使用して次の 潜在状態zt+1^,報酬rt^,割引率γt^の予測を行う ❖ 時系列データの処理 ➢
Transformerはht-Lからhtまでのシーケンスを処理することで過去のデー タに基づいて現在の隠れ状態htを更新する
損失関数の設計 (観測モデル) 4/9 ❖ decoder:観測デコーダ ➢ モデルがデータをどれだけうまく再構成できているかを測る項 ❖ entropy regularizer:エントロピー正則化項
➢ 潜在状態の分布が一様になりすぎることを防ぐための項 ❖ consistency:一貫性損失 ➢ エンコーダとダイナミクスモデルが生成する潜在状態の分布の一貫性を測 る項 ❖ α1, α2:ハイパラ ➢ エントロピー正則化項と一貫性損失の重みを制御する
❖ latent state predictor:潜在状態予測器 ➢ 次の時間における潜在状態 zt+1 の予測のクロスエントロピー ❖ reward
predictor:報酬予測器 ➢ モデルが予測する報酬 rt の負の対数尤度 ❖ discount predictor:割引予測器 ➢ 割引率 γt の予測の負の対数尤度,エピソード終了時 dt=1 のときγt=0で それ以外のときは,γt=γとなる ❖ β1, β2:ハイパラ ➢ 報酬予測器と割引予測器の重みを制御する 損失関数の設計 (ダイナミクスモデル) 5/9
Atari 100kベンチマーク結果 (定量評価) 6/9 ❖ 100エピソードで訓練したモデ ルで5回評価したスコアから 「中央値と平均値」を算出 ❖ Normalized
Mean ➢ 人間プレイヤーの平均スコア に対する各アルゴリズムのス コアの正規化平均 ❖ Normalized Median ➢ 人間プレイヤーの平均スコア に対する各アルゴリズムのス コアの正規化中央値 ❖ ほとんどのゲームで従来手法を 上回る性能 ❖ Normalized Meanのスコアが 高いことから人間プレイヤーに 匹敵する性能を示している
❖ Boxing ➢ プレイヤー (白) が攻撃 (赤フレーム)を行い,次のフレームで報酬を獲得 している (緑フレーム) ❖
Freeway ➢ プレイヤーは上方向に移動するアクションを継続して選択している (赤い 横枠) ❖ モデルは行動を取り,その結果として期待される報酬を計算し,ゲー ムの進行を「想像」することができている ゲームタスクの観測軌道 (定性評価) 7/9
まとめ 8/9 ❖ World model × Transformerによるモデルを提案した ❖ Dreamerv2の損失関数の設計を修正した ❖
定量評価において,平均スコアは人間とほぼ同等性能 ❖ 定性評価では,提案モデルが観測ot,行動at,報酬rtを予測しゲーム 進行を再現できている
感想 9/9 ❖ 推論時にTransformerを使用しないことで,計算コスト削減しているの がIRISとの違い (だと思う) ❖ このモデルをオフラインデータで実験したらどのようになるのか気に なる ➢
githubを見た限りデータセットはないのでオンライン学習だと思う