Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Using Navigation to Improve Recommendati...
Search
ysekky
June 13, 2017
Research
1
160
[論文紹介] Using Navigation to Improve Recommendations in Real time / recsys-2016-netflix
ysekky
June 13, 2017
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.1k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.6k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
750
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.1k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.9k
Other Decks in Research
See All in Research
90 分で学ぶ P 対 NP 問題
e869120
15
6.4k
チャッドローン:LLMによる画像認識を用いた自律型ドローンシステムの開発と実験 / ec75-morisaki
yumulab
1
140
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
110
Intrinsic Self-Supervision for Data Quality Audits
fabiangroeger
0
480
Principled AI ~深層学習時代における課題解決の方法論~
taniai
3
1.1k
LLM 시대의 Compliance: Safety & Security
huffon
0
640
Self-supervised audiovisual representation learning for remote sensing data
satai
3
110
rtrec@dbem6
myui
6
720
請求書仕分け自動化での物体検知モデル活用 / Utilization of Object Detection Models in Automated Invoice Sorting
sansan_randd
0
160
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
130
[論文紹介] iTransformer: Inverted Transformers Are Effective for Time Series Forecasting
shiba4839
0
130
ラムダ計算の拡張に基づく 音楽プログラミング言語mimium とそのVMの実装
tomoyanonymous
0
440
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Designing for Performance
lara
608
69k
Git: the NoSQL Database
bkeepers
PRO
430
65k
GitHub's CSS Performance
jonrohan
1030
460k
How to Ace a Technical Interview
jacobian
276
23k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
Gamification - CAS2011
davidbonilla
81
5.2k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
A better future with KSS
kneath
239
17k
It's Worth the Effort
3n
184
28k
Transcript
Using Navigation to Improve Recommendations in Real time Chao-Yuan Wu@UT
Austin Christopher V. Alvino@Netflix Alexander J. Smola@CMU Justin Basilico@Netflix Recsys’16 Yoshifumi Seki@Gunosy Inc. GunosyDM研究会 2017.06.13
自己紹介 • 関 喜史 ◦ Gunosy 共同創業者 ◦ データ分析部研究開発チーム (仮)
◦ 東大松尾研, 工学博士(2017年3月卒) • 研究テーマ: ニュース推薦システムのサービス応用について • 関心領域 ◦ 推薦システム, ユーザ行動分析 • 趣味 ◦ アイドル、日本酒、将棋
概要 • Netflixのリアルタイムな推薦システムの仕組み • オンライン機械学習 • 利用におけるcontextは様々 ◦ 一人で使う、二人で使う、家族と使う ◦
複数人でアカウントを共有している ◦ 感情とか • ユーザのスクロールの情報を元に、どの列を見せるかを逐次決める •
Model • r: row • s: session • i: i-th
video • S: scrolled or not {0, 1} • C: played or not {0, 1} • I: interested or not {0, 1}
この事後確率を最大化するパラメータを作りたい
この事後確率を最大化するパラメータを作りたい セッションと行に分解する
この事後確率を最大化するパラメータを作りたい セッションと行に分解する
この事後確率を最大化するパラメータを作りたい セッションと行に分解する 興味関心変数を導入
この事後確率を最大化するパラメータを作りたい セッションと行に分解する
Play prediction • 劣モジュラ関数で推定する • <>は何らかの関数: コサイン類似度でも、FMでもよい ◦ f_tiはビデオiの特徴ベクトル •
qの各次元はf_tiのその次元の総和を凸関数にかけたもの • パラメータはshared, user-specific, row-specific, {row-user}-specificの4種を分け てる
User Intentの導入 • User intentの導入をする ◦ 先程の定義と同様 • I_s,rが0のときは, C=1の確率は0になるという仮定を置く
この事後確率を最大化するパラメータを作りたい セッションと行に分解する
User Intentの推定 • セッションとrowに対する興味関心 • vとwはplay prediction同様にshared, user-specific, session-specificで校正され る
• v_ρはvの潜在変数
この事後確率を最大化するパラメータを作りたい セッションと行に分解する
Scroll prediction • I_s,r=1のとき、δ_ρにのみ依存するロジスティック関数になる • I_s,r=0のときはS_s,r=1の確率は0になる
Online Page Adaptation • 目的はコンテンツ行の並びと、行内のビデオの並びを最適化すること • 足した時の閲覧率が最も高くなる行/ビデオをえらんでいく
Impression Fatigue and Repeated Plays • 式(2)に加える • x_tはユーザが再生した回数 •
何度も再生する動画もある ◦ Binaryなindicatorを追加する ◦ Repeated play
Inference • EMアルゴリズムで推定 • E-step: I_s,rの事後確率を計算する • M-step: S, Cの事後確率が最大になるパラメータを計算する
None
Online-Update • Session中に学習して、パラメータを更新していきたい ◦ つまり上部をみたユーザの行動から、下部の行を生成する • EMアルゴリズムのM-stepでセッションのパラメータだけを更新する
Experiment • Playstation 3のセッション ◦ 同一の国 • 2015/4 ~ 2015/5
• 294k sessions • Testデータは2015/6, 59k sessions • 40 rows, max 75 videos
Evaluation • 10行のデータが与えられたときに残りの行を生成する • 再生されてたビデオが含まれる行が生成できたら、positive ◦ Mean Reciprocal Rank(MRR) ▪
平均逆順位 ▪ 初めて正解がでた順位の逆数を足し合わせて平均化する ◦ Precision at 5(P@5) • ベースラインはユーザと行のFactorization Machine(libFM) • オフラインモデルからのgain値で比較する
• FMより強い • 観測が増えるに連れて、改善している
• 過去のSessionが無いユーザにおいて強い -> Cold startで成果を上げている
Fatigue Effect and repeated plays
まとめ • セッション内での動きから推薦結果を徐々に改善していく ◦ Cold-startでも強い ◦ ただ、これ本当にアプリで実装できんの???無理じゃね??? • スクロールや再生をモデリングする方法として参考になった •
ただ特徴量の設計がわかんないので、うーん • オンラインで実験してほしかった感 • Factorization Machineとの比較って、相手弱すぎない? •
References • Slide: https://www.cs.utexas.edu/~cywu/RecSys2016_slides.pdf • Youtube: https://www.youtube.com/watch?v=rYinLmOWRtM •