Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: A Document Descriptor using Covariance of...
Search
Yumeto Inaoka
February 27, 2019
Research
1
200
文献紹介: A Document Descriptor using Covariance of Word Vectors
2019/02/27の文献紹介で発表
Yumeto Inaoka
February 27, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
130
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
170
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
120
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
120
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
93
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
210
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
270
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
180
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
180
Other Decks in Research
See All in Research
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
530
The Fellowship of Trust in AI
tomzimmermann
0
130
LLM時代にLabは何をすべきか聞いて回った1年間
hargon24
1
490
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
2.4k
Physics of Language Models: Part 3.1, Knowledge Storage and Extraction
sosk
1
940
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
7
1.2k
クラウドソーシングによる学習データ作成と品質管理(セキュリティキャンプ2024全国大会D2講義資料)
takumi1001
0
280
20240820: Minimum Bayes Risk Decoding for High-Quality Text Generation Beyond High-Probability Text
de9uch1
0
120
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
320
Kaggle役立ちアイテム紹介(入門編)
k951286
14
4.6k
[第62回NLPコロキウム]「なりきり」を促すHCI設計:対話型接客ロボットの遠隔操作者へのリアルタイム変換音声フィードバックの適用
nami_ogawa
1
320
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
330
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
180
21k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Code Reviewing Like a Champion
maltzj
520
39k
Designing Experiences People Love
moore
138
23k
Being A Developer After 40
akosma
86
590k
Optimizing for Happiness
mojombo
376
70k
How GitHub (no longer) Works
holman
310
140k
Navigating Team Friction
lara
183
14k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
Transcript
A Document Descriptor using Covariance of Word Vectors 文献紹介 2019/02/27
長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature 2 Title A Document Descriptor using Covariance of Word
Vectors Author Marwan Torki Volume Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 527-532, 2018.
Abstract 単語ベクトルを用いた固定長の文書表現を提案 (Document-Covariance Descriptor; DoCoV) → Supervised, Unsupervisedのアプリケーションで 簡単に利用できる
様々なタスクでSoTAに匹敵する性能 3
Introduction ベクトルを利用した文書検索には長い歴史がある ← Bag-of-Words, Latent Semantic Indexing(LSI) 近年はニューラル言語モデルで単語埋め込みを学習
単語ではなく文, 段落, 文書の分散表現も注目されている 4
vs. DoCoV doc2vecやFastSentは 単語と共通の空間 共分散は単語の密度の 形状を符号化 5
vs. DoCoV doc2vecやFastSentは学習に時間がかかる DoCoV(共分散)の計算は並列性が高く高速に行える 6
DoCoV Document Observation Matrix d次元の単語埋め込みとn単語の文書において ∈ ×と定義 (行は単語、列は埋め込みの各次元) 7
DoCoV Covariance Matrix 8
DoCoV Vectorized representation 9
Evaluation IMDB movie reviewsの分類性能によって 単語ベクトルによる変化を評価 ベクトルを線形SVMで分類 1つのレビューは複数の文で構成される
Train/Test/Unlabeled : 25K/25K/50K 事前学習済みのword2vec, GloVeと、 TrainとUnlabeledで学習したword2vecで比較 10
Result 11
Result 12
Result 13
Result 14
Evaluation 文の意味関連性データセットSICK, STS 2014で 文書ベクトルを評価 事前学習済みの単語埋め込みを使用 (dim=300)
Pearson correlationとSpearman correlationで評価 15
Result 学習が必要な他手法と匹敵するような結果 16
Evaluation Google newsで事前学習済みの単語埋め込みを使用 Movie Reviews(MR), Subjectivity(Subj), Customer Reviews(CR),
TREC Question(TREC)を データセットとして使用 17
Result 18
Result 19
Result 20
Result 21
Conclusions 文、段落、文書の新たなベクトル表現方法を提案 他手法のような反復の学習を必要としない Supervised, Unsupervisedのタスクにおいて その有用性を確認 22