Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: A Document Descriptor using Covariance of...
Search
Yumeto Inaoka
February 27, 2019
Research
1
280
文献紹介: A Document Descriptor using Covariance of Word Vectors
2019/02/27の文献紹介で発表
Yumeto Inaoka
February 27, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
240
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
350
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
能動適応的実験計画
masakat0
2
840
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
3.6k
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
840
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
500
20250725-bet-ai-day
cipepser
2
470
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
650
Generative Models 2025
takahashihiroshi
25
13k
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
160
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
310
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
590
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
510
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
180
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
36
6.9k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Docker and Python
trallard
46
3.6k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Become a Pro
speakerdeck
PRO
29
5.5k
Mobile First: as difficult as doing things right
swwweet
224
10k
Documentation Writing (for coders)
carmenintech
75
5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Why Our Code Smells
bkeepers
PRO
339
57k
Transcript
A Document Descriptor using Covariance of Word Vectors 文献紹介 2019/02/27
長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature 2 Title A Document Descriptor using Covariance of Word
Vectors Author Marwan Torki Volume Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 527-532, 2018.
Abstract 単語ベクトルを用いた固定長の文書表現を提案 (Document-Covariance Descriptor; DoCoV) → Supervised, Unsupervisedのアプリケーションで 簡単に利用できる
様々なタスクでSoTAに匹敵する性能 3
Introduction ベクトルを利用した文書検索には長い歴史がある ← Bag-of-Words, Latent Semantic Indexing(LSI) 近年はニューラル言語モデルで単語埋め込みを学習
単語ではなく文, 段落, 文書の分散表現も注目されている 4
vs. DoCoV doc2vecやFastSentは 単語と共通の空間 共分散は単語の密度の 形状を符号化 5
vs. DoCoV doc2vecやFastSentは学習に時間がかかる DoCoV(共分散)の計算は並列性が高く高速に行える 6
DoCoV Document Observation Matrix d次元の単語埋め込みとn単語の文書において ∈ ×と定義 (行は単語、列は埋め込みの各次元) 7
DoCoV Covariance Matrix 8
DoCoV Vectorized representation 9
Evaluation IMDB movie reviewsの分類性能によって 単語ベクトルによる変化を評価 ベクトルを線形SVMで分類 1つのレビューは複数の文で構成される
Train/Test/Unlabeled : 25K/25K/50K 事前学習済みのword2vec, GloVeと、 TrainとUnlabeledで学習したword2vecで比較 10
Result 11
Result 12
Result 13
Result 14
Evaluation 文の意味関連性データセットSICK, STS 2014で 文書ベクトルを評価 事前学習済みの単語埋め込みを使用 (dim=300)
Pearson correlationとSpearman correlationで評価 15
Result 学習が必要な他手法と匹敵するような結果 16
Evaluation Google newsで事前学習済みの単語埋め込みを使用 Movie Reviews(MR), Subjectivity(Subj), Customer Reviews(CR),
TREC Question(TREC)を データセットとして使用 17
Result 18
Result 19
Result 20
Result 21
Conclusions 文、段落、文書の新たなベクトル表現方法を提案 他手法のような反復の学習を必要としない Supervised, Unsupervisedのタスクにおいて その有用性を確認 22