Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: A Document Descriptor using Covariance of...
Search
Yumeto Inaoka
February 27, 2019
Research
1
280
文献紹介: A Document Descriptor using Covariance of Word Vectors
2019/02/27の文献紹介で発表
Yumeto Inaoka
February 27, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
240
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
350
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
150
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
580
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
770
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
150
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
820
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
660
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
370
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
5.8k
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
150
Submeter-level land cover mapping of Japan
satai
3
460
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
130
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
670
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
950
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Making Projects Easy
brettharned
120
6.4k
Embracing the Ebb and Flow
colly
88
4.9k
Being A Developer After 40
akosma
91
590k
Building Applications with DynamoDB
mza
96
6.7k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
RailsConf 2023
tenderlove
30
1.3k
Navigating Team Friction
lara
190
15k
Transcript
A Document Descriptor using Covariance of Word Vectors 文献紹介 2019/02/27
長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature 2 Title A Document Descriptor using Covariance of Word
Vectors Author Marwan Torki Volume Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 527-532, 2018.
Abstract 単語ベクトルを用いた固定長の文書表現を提案 (Document-Covariance Descriptor; DoCoV) → Supervised, Unsupervisedのアプリケーションで 簡単に利用できる
様々なタスクでSoTAに匹敵する性能 3
Introduction ベクトルを利用した文書検索には長い歴史がある ← Bag-of-Words, Latent Semantic Indexing(LSI) 近年はニューラル言語モデルで単語埋め込みを学習
単語ではなく文, 段落, 文書の分散表現も注目されている 4
vs. DoCoV doc2vecやFastSentは 単語と共通の空間 共分散は単語の密度の 形状を符号化 5
vs. DoCoV doc2vecやFastSentは学習に時間がかかる DoCoV(共分散)の計算は並列性が高く高速に行える 6
DoCoV Document Observation Matrix d次元の単語埋め込みとn単語の文書において ∈ ×と定義 (行は単語、列は埋め込みの各次元) 7
DoCoV Covariance Matrix 8
DoCoV Vectorized representation 9
Evaluation IMDB movie reviewsの分類性能によって 単語ベクトルによる変化を評価 ベクトルを線形SVMで分類 1つのレビューは複数の文で構成される
Train/Test/Unlabeled : 25K/25K/50K 事前学習済みのword2vec, GloVeと、 TrainとUnlabeledで学習したword2vecで比較 10
Result 11
Result 12
Result 13
Result 14
Evaluation 文の意味関連性データセットSICK, STS 2014で 文書ベクトルを評価 事前学習済みの単語埋め込みを使用 (dim=300)
Pearson correlationとSpearman correlationで評価 15
Result 学習が必要な他手法と匹敵するような結果 16
Evaluation Google newsで事前学習済みの単語埋め込みを使用 Movie Reviews(MR), Subjectivity(Subj), Customer Reviews(CR),
TREC Question(TREC)を データセットとして使用 17
Result 18
Result 19
Result 20
Result 21
Conclusions 文、段落、文書の新たなベクトル表現方法を提案 他手法のような反復の学習を必要としない Supervised, Unsupervisedのタスクにおいて その有用性を確認 22