Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Bag-of-Words as Target for Neural Machine...
Search
Yumeto Inaoka
January 22, 2019
Research
0
170
文献紹介: Bag-of-Words as Target for Neural Machine Translation
2019/1/22の文献紹介で発表
Yumeto Inaoka
January 22, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
140
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
180
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
130
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
130
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
110
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
230
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
290
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
190
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
190
Other Decks in Research
See All in Research
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
350
地理空間情報と自然言語処理:「地球の歩き方旅行記データセット」の高付加価値化を通じて
hiroki13
1
150
The Relevance of UX for Conversion and Monetisation
itasohaakhib1
0
120
TransformerによるBEV Perception
hf149
1
620
LLM時代にLabは何をすべきか聞いて回った1年間
hargon24
1
580
CoRL2024サーベイ
rpc
1
1.3k
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
410
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
270
コミュニティドライブプロジェクト
smartfukushilab1
0
110
Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
satai
2
140
機械学習による言語パフォーマンスの評価
langstat
6
850
FOSS4G 山陰 Meetup 2024@砂丘 はじめの挨拶
wata909
1
140
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
What's in a price? How to price your products and services
michaelherold
244
12k
Building Applications with DynamoDB
mza
92
6.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
230
52k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
113
50k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Why Our Code Smells
bkeepers
PRO
335
57k
Adopting Sorbet at Scale
ufuk
74
9.2k
Designing for humans not robots
tammielis
250
25k
Optimizing for Happiness
mojombo
376
70k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
350
No one is an island. Learnings from fostering a developers community.
thoeni
19
3.1k
Transcript
1 Bag-of-Words as Target for Neural Machine Translation 文献紹介 2019/1/22
長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature • Bag-of-Words as Target for Neural Machine Translation •
Shuming Ma, Xu SUN, Yizhong Wang, Junyang Lin • Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 332-338, 2018. 2
Abstract 翻訳において正解はひとつじゃない 既存のNMTではひとつのみを正解として使用 → 他の正解は誤りとして学習される 正解同士は似たBag-of-Words (BoW)
を共有する → BoWによって正解とそれ以外を区別できる 学習セットにない正解を考慮するためにBoWを利用 → 中国語-英語の翻訳において優位性を確認 3
Introduction NMTは首尾一貫の妥当な翻訳の生成ができる 現在のNeural Machine Translation (NMT)の 多くはSequence-to-Sequence モデル(Seq2Seq)に
基づいている 4
Seq2Seq (Overview) 5 私 は 元気だ <BOS> I am fine
<EOS> 入力文 出力文 Encoder Decoder
Seq2Seq (Encoder) 6 私 は 元気だ One-hot vector Embedding layer
Recurrent layer 入力文
Seq2Seq (Decoder) 7 I <BOS> I am fine am fine
<EOS> One-hot vector Embedding layer Recurrent layer One-hot vector Output layer 出力文
Introduction NMTではひとつの正解のみを 学習に用いる 他の正解は誤った翻訳と学習 → 悪影響を与える可能性 8
Introduction 正しい翻訳は似たBoWを共有 → 正しい翻訳と誤った翻訳は BoWで区別できる 文とBoWの両方を対象とする 手法を提案 →
T.2よりT.1を優遇 9
Bag-of-Words Generation マルチラベル分類問題のようにBoWを生成 Decoderの出力である単語レベルのスコアベクトル を 合計して、文レベルのスコアベクトルを得る 文レベルのスコアベクトルは、文中の任意の位置に
対応する単語が出現する確率を表す 10
Notation データセットに含まれるサンプル数:N i番目のサンプル:(, ) (x: source, y: target)
= 1 , 2 , … , = 1 , 2 , … , = 1 , 2 , … , はのBoWを表す 11
Bag-of-Words Generation 12 = softmax = �
Targets and Loss Function 文の翻訳とBoWの生成でそれぞれ損失関数(1 , 2 )を定義
重み で2つの損失を足し合わせる() (𝑖𝑖 : epoch , k, : fixed-value) 1 = − � =1 log l2 = − � =1 log = 1 + 2 = min(, + 𝛼𝛼) 13 𝑖𝑖
Experiments LDCコーパス(1.25M)で学習、NIST翻訳タスクで評価 語彙サイズを英中それぞれ5万語に設定 BLEUで評価 14
Results 15 4.55 BLEU points↑
Results 16 4.55 BLEU points↑
Results 17
Conclusions 正解訳とBoWの両方を考慮する手法を提案 提案手法が強力なベースラインに対して優位である結果 Morphologically-rich language*や低資源言語において どのように適用するかについて今後の課題とする *
文法的関係が相対位置や助詞ではなく単語の変化で 決まるような言語 18