Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Shoe Recognition Model with Floor Pressure Sens...
Search
yumulab
November 06, 2024
Research
0
31
Shoe Recognition Model with Floor Pressure Sensors (Slide)
2024年11月3日(日)〜7日(木)に開催されたSENSORCOMM2024の発表資料(スライド)
yumulab
November 06, 2024
Tweet
Share
More Decks by yumulab
See All by yumulab
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
420
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
450
MGDSS:慣性式モーションキャプチャを用いたジェスチャによるドローンの操作 / ec75-yamauchi
yumulab
0
270
チャッドローン:LLMによる画像認識を用いた自律型ドローンシステムの開発と実験 / ec75-morisaki
yumulab
1
530
NOVVS:北海道情報大学図書館における滞在人数可視化システムの開発と検証 / i2025-minami
yumulab
0
95
CHaserWeb:ブラウザ上で動作する対戦型プログラミング学習環境の提案と評価 / i2025-inoue
yumulab
0
250
CARMUI-NET:自動運転車遠隔監視のためのバーチャル都市プラットフォームにおける通信品質変動機能の開発と評価 / UBI85
yumulab
0
250
待機電力を削減したネットワーク更新型電子ペーパーサイネージの研究開発 / UBISympo2025
yumulab
0
120
デジタルファブリケーションの未来を北海道・札幌から考える / SIAF School 2025
yumulab
0
110
Other Decks in Research
See All in Research
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.5k
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
110
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
16k
最適化と機械学習による問題解決
mickey_kubo
0
140
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
240
Vision And Languageモデルにおける異なるドメインでの継続事前学習が性能に与える影響の検証 / YANS2024
sansan_randd
1
110
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
330
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
560
NLP Colloquium
junokim
1
170
2025年度 生成AIの使い方/接し方
hkefka385
1
720
Principled AI ~深層学習時代における課題解決の方法論~
taniai
3
1.2k
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
440
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.7k
Speed Design
sergeychernyshev
32
1k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Adopting Sorbet at Scale
ufuk
77
9.5k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Become a Pro
speakerdeck
PRO
29
5.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Building Adaptive Systems
keathley
43
2.7k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Transcript
Shoe Recognition Model with Floor Pressure Sensors Sora Kamimura *1
Tetsuo Yutani *2 Atsuko Shibuya *2 Tsubasa Yumura *1 *1 Hokkaido Information University *2 FirstFourNotes, LLC <%FNP>
Table of contents #BDLHSPVOE1VSQPTF 1SFTTVSFTFOTPS .PEFM
%BUBTFUT 3FTVMU%JTDVTTJPO $PODMVTJPO
#BDLHSPVOE1VSQPTF 5SB ffi D fl PXBOBMZTJT #ZDBNFSB 4VSWFJMMBODFDBNFSBTDBOCFEJWFSUFE $BONBOBHFBMBSHFBSFBCZPOFDBNFSB *OWBTJPOPGQSJWBDZ
#MJOETQPUTDBVTFECZPCTUBDMFT ɾ*NQSPWFEXPSLF ffi DJFODZ ɾ"WPJESJTL DPMMJTJPOT GBMMT FUDʜ #Z fl PPSQSFTTVSFTFOTPS /PQSJWBDZJTTVF /PCMJOETQPUT
#BDLHSPVOE1VSQPTF 5SB ff i D fl PXBOBMZTJTCBTFE fl PPSQSFTTVSFTFOTPS SFRVJSFTJEFOUJ
fi DBUJPOPGQFPQMF )VNBOJEFOUJ fi DBUJPOVTFT XFJHIU TUSJEFMFOHUI TQFFE TIPFUZQF FUD *OUIJTTUVEZ XFEFWFMPQUIF TIPFSFDPHOJUJPONPEFMXJUI fl PPSQSFTTVSFTFOTPST
1SFTTVSFTFOTPS .BUFSJBMT ɾ7FMPTUBU QSFTTVSFTFOTJUJWFDPOEVDUJWFTIFFU ɾ$PQQFSGPJMUBQF ɾ"SEVJOP 4USVDUVSF ɾ$PQQFSGPJMUBQFTBSFNNXJEFBOE ɹTQBDFENNBQBSU ɾUBQFTCPUIWFSUJDBMMZBOEIPSJ[POUBMMZ
ɾNFBTVSFNFOUQPJOUT ɾ.FBTVSFUIFWPMUBHFBUFBDIQPJOUFWFSZNT
.PEFM ɾ5IF*OQVUMBZFSSFDFJWFTSBXEBUB ɾ5IFIJEEFOMBZFSJTUISFFGVMMZDPOOFDUFEMBZFS ɾ5IFPVUQVUMBZFSXJMMPVUQVUUIFTIPFJEFOUJ fi DBUJPOFTUBCMJTINFOU ɹ TOFBLFS SPPNTIPF BOETBOEBM
/FVSBMOFUXPSLNPEFM
%BUBTFUT )PXUPDPMMFDU $BMJCSBUJPOUIFTFOTPS 1VUPOTIPF 8BJUBGFXTFDPOET TPST
.FBTVSFNFOUT .FBTVSFNFOUTUJNFT JOFBDITIPF %BUB5ZQF ɾ&BDITFOTPS ʙ PS.FSHFE ɾ)PXMPOHXBJUGPSNFBTVSF TPST ɾ/PSNBMPS3PUBUFEEFHSFFTGPS ɹEBUBBVHNFOUBUJPO
3FTVMU ɾ5IF'NFBTVSFJOTJT ɹIJHIFSUIBOT ˠ7JCSBUJPOTBOEPUIFSOPJTFTJT ɹMFTTCZXBJUJOH ɾ*OTFDPOET UIF'NFBTVSFPG ɹNFSHFEEBUBJTIJHIFSUIBO ɹFBDITFOTPSEBUB ˠ5IFTFOTPSIBTBTFOTJUJWJUZCJBT
ɹ"OE NPEFMDBOUMFBSOJUCZ ɹFBDITFOTPSEBUB ɹ#VUMFBSOJOHCFDBNFQPTTJCMFCZ ɹNFSHFEEBUB 'NFBTVSF F = 2 × precision × recall precision + recall
$PODMVTJPO ɾ*OUIJTTUVEZ XFEFWFMPQFEUIFOFVSBMOFUXPSLNPEFMUPSFDPHOJ[F ɹTIPFUZQFTXJUI fl PPSQSFTTVSFTFOTPSXJUIB7FMPTUBU ɾ6TJOHBSPUBUFEEBUBTFUQSPWFEUPCFUIFNPTUF ff FDUJWFBQQSPBDIGPS ɹSFBMXPSMEBQQMJDBUJPOT
ɾ5IFSFBSFMBSHFEJ ff FSFODFCFUXFFOUIFFYQFSJNFOUBMFOWJSPONFOU ɹBOEUIFBTTVNFESFBMFOWJSPONFOU ɾ5IFSFBSFQSPCMFNTTVDIBTSFBDUJPOSBUFBOEBMMPXBCMFQSFTTVSF ɾ8FXJMMDPOUJOVFUPEFWFMPQCPUIIBSEXBSFBOETPGUXBSFUPTPMWF ɹUIFTFQSPCMFNT