Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mackerelにおける時系列データベースの性能改善 / Performance Improv...
Search
Yuuki Tsubouchi (yuuk1)
July 09, 2016
Technology
13
8.7k
Mackerelにおける時系列データベースの性能改善 / Performance Improvement of TSDB in Mackerel
ペパボ・はてな技術大会〜インフラ技術基盤〜@福岡
Yuuki Tsubouchi (yuuk1)
July 09, 2016
Tweet
Share
More Decks by Yuuki Tsubouchi (yuuk1)
See All by Yuuki Tsubouchi (yuuk1)
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
820
博士論文公聴会: Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining / PhD Defence
yuukit
1
120
博士学位論文予備審査 / Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining
yuukit
1
1.8k
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
230
工学としてのSRE再訪 / Revisiting SRE as Engineering
yuukit
19
13k
Cloudless Computingの論文紹介
yuukit
2
510
#SRE論文紹介 Detection is Better Than Cure: A Cloud Incidents Perspective V. Ganatra et. al., ESEC/FSE’23
yuukit
3
1.9k
エンジニアのためのSRE論文への招待 / Introduction to SRE Papers for Engineers
yuukit
2
11k
博士課程での研究まとめ 2023年1月版 / Summary of my research in the PhD course
yuukit
1
300
Other Decks in Technology
See All in Technology
Cursor AgentによるパーソナルAIアシスタント育成入門―業務のプロンプト化・MCPの活用
os1ma
9
3.2k
Lakeflow Connectのご紹介
databricksjapan
0
100
Ops-JAWS_Organizations小ネタ3選.pdf
chunkof
2
120
DuckDB MCPサーバーを使ってAWSコストを分析させてみた / AWS cost analysis with DuckDB MCP server
masahirokawahara
0
870
10分でわかるfreeeのQA
freee
1
12k
Classmethod AI Talks(CATs) #21 司会進行スライド(2025.04.17) / classmethod-ai-talks-aka-cats_moderator-slides_vol21_2025-04-17
shinyaa31
0
460
7,000名規模の 人材サービス企業における プロダクト戦略・戦術と課題 / Product strategy, tactics and challenges for a 7,000-employee staffing company
techtekt
0
260
ウォンテッドリーにおける Platform Engineering
bgpat
0
190
AI Agentを「期待通り」に動かすために:設計アプローチの模索と現在地
kworkdev
PRO
2
390
Automatically generating types by running tests
sinsoku
1
460
20250408 AI Agent workshop
sakana_ai
PRO
15
3.5k
Amazon CloudWatch Application Signals ではじめるバーンレートアラーム / Burn rate alarm with Amazon CloudWatch Application Signals
ymotongpoo
5
320
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
The Cost Of JavaScript in 2023
addyosmani
49
7.7k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Rails Girls Zürich Keynote
gr2m
94
13k
Code Reviewing Like a Champion
maltzj
522
39k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Done Done
chrislema
183
16k
Speed Design
sergeychernyshev
29
880
Unsuck your backbone
ammeep
670
57k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
650
Transcript
Mackerelʹ͓͚Δ ࣌ܥྻσʔλϕʔεͷੑೳվળ ϖύϘɾͯͳٕज़େձʙΠϯϑϥٕज़ج൫ʙ@Ԭ ͯͳ id:y_uuki
id:y_uuki yuuki ΣϒΦϖϨʔγϣϯΤϯδχΞ@ͯͳ ೖࣾ3͘Β͍
07/02@ژ https://speakerdeck.com/yuukit/linux-network-performance-improvement-at-hatena
͘͡ 1. Mackerelͱ࣌ܥྻσʔλ 2. GraphiteͷΞʔΩςΫνϟͱੑೳঢ়گ 3. σΟεΫεϥογϯάͱͦͷղܾ 4. ·ͱΊ
͘͡ 1. Mackerelͱ࣌ܥྻσʔλ 2. GraphiteͷΞʔΩςΫνϟͱੑೳঢ়گ 3. σΟεΫεϥογϯάͱͦͷղܾ 4. ·ͱΊ
https://mackerel.io
αʔόͷϝτϦοΫՄࢹԽ
MackerelͷΞʔΩςΫνϟ
Mackerelͷ࣌ܥྻσʔλͷಛੑ • ΤʔδΣϯτ͕Ϣʔβ͞Μͷϗετ͔ΒຖϝτϦοΫ ߘ • 2016/01࣌ͰΞΫςΟϒΤʔδΣϯτ 10,000+ • 1ΤʔδΣϯτ͋ͨΓͷϝτϦοΫ࠷େ200 •
ԾʹฏۉϝτϦοΫΛ100 metrics/agentͱ͢Δͱɹ ߹ܭૹ৴ϝτϦοΫ 1,000,000 metrics/min + • ϝτϦοΫͷେྔॻ͖ࠐΈʹ͑ΒΕΔσʔλϕʔε͕ ඞཁ
Graphite
͘͡ 1. Mackerelͱ࣌ܥྻσʔλ 2. GraphiteͷΞʔΩςΫνϟͱੑೳঢ়گ 3. σΟεΫεϥογϯάͱͦͷղܾ 4. ·ͱΊ
Graphiteͱ • PythonͰॻ͔Εͨ࣌ܥྻσʔλϕʔεϛυϧΣΞ • HTTPΠϯλϑΣʔε ʢॻ͖ࠐΈಠࣗϓϩτίϧʣ • ग़ྗσʔλܗࣜάϥϑը૾·ͨJSON Graphite (timestamp,
name, value) graph request Image or JSON
GraphiteͷΞʔΩςΫνϟ (timestamp, name, value) graph request Image or JSON carbon
graphite-web filesystem write read whisper whisper
GraphiteͷΞʔΩςΫνϟ (graphite-web) (timestamp, name, value) graph request Image or JSON
carbon graphite-web filesystem write read whisper whisper ಡΈࠐΈཁٻΛड͚͚ΔͨΊͷWebΞϓϦέʔγϣϯ
GraphiteͷΞʔΩςΫνϟ (carbon) (timestamp, name, value) graph request Image or JSON
carbon graphite-web filesystem write read whisper whisper ॻ͖ࠐΈཁٻΛड͚͚ΔͨΊͷσʔϞϯ
GraphiteͷΞʔΩςΫνϟ (whisper) (timestamp, name, value) graph request Image or JSON
carbon graphite-web filesystem write read whisper whisper ࣌ܥྻDBϑΝΠϧΛ࡞ɾߋ৽͢ΔͨΊͷϥΠϒϥϦ ϝτϦοΫ͝ͱʹ ϑΝΠϧ͕Ͱ͖Δ
Whisperͷσʔλߏ • ͯ͢ͷσʔλΛอଘ͢ΔͱσΟεΫ༻ྔ͕ංେԽ • timestamp: 4byte, value: 8byteͱͯ͠12bytes/datapointͱ͢Δ ͱɺ1Ͱ6MB/metric •
ݹ͍σʔλʹ͍ͭͯҰఆظؒͰฏۉԽor࠷େΛؙͯ͠Ί ͯ͠·ͬͯσΟεΫ༻ྔΛઅ • ex. 1ਫ਼ͷσʔλ1͚ͩͰΑ͍͕ɺ5ਫ਼ͷσʔλ 1िؒ͢ͱ͍͏Α͏ͳΠϝʔδ
Graphiteͷॻ͖ࠐΈύϑΥʔϚϯεಛੑ(CPUར༻) • carbon2ͭͷεϨου͕ڠௐͯ͠ಈ࡞͢Δ • σʔλΛड͚औΔωοτϫʔΫI/OεϨου • ϑΝΠϧॻ͖ࠐΈͷͨΊͷI/OεϨου • ΠϕϯτۦಈϞσϧͷωοτϫʔΫαʔό •
όοϑΝ͝͠ʹεϨουؒͰσʔλϙΠϯτΛ͢ • ֤εϨου͕1ίΞͰ͢Δ • carbonϓϩηεΛෳݸͨͯͯࢄͤ͞Δ
Graphiteͷॻ͖ࠐΈύϑΥʔϚϯεಛੑ(σΟεΫIO) • େྔͷϑΝΠϧʹখ͞ͳσʔλྔʢ12ByteʣΛ1Ҏ ʹॻ͖ࠐΉ • ϑΝΠϧγεςϜ্ͷۙྡϒϩοΫʹ·ͱΊͯॻ͘͜ͱ ͕Ͱ͖ͳ͍ͨΊɺI/Oޮѱ͍ (શํҐॻ͖ࠐΈ) • ໘ɺಉ࣌ʹෳͷεϨου͕1ͭͷϑΝΠϧʹॻ͖ࠐ
Ή͜ͱ͕ͳ͍ͨΊɺ I/OͷฒྻߴΊ͍͢ • XFSͷΑ͏ͳฒྻI/Oʹ༏ΕͨϑΝΠϧγεςϜͰͳ͘ ͯɺੑೳมΘΒͳ͍ (ext4ͳͲ)
ϋʔυΣΞߏͱϦιʔε༻ྔ • CPU: Xeon E5-2697 v3 @ 2.60GHz 2 socket
28ίΞ • ϝϞϦ: 126GB • σΟεΫ: Fusion ioMemory ioDrive2 6.4TB • ͍ΘΏΔϑϨογϡετϨʔδɻϝʔΧʔެশ 300k write IOPS • ࣮ޮI/Oੑೳ: 50k ~ 100k write IOPS • ී௨ͷSSDͳΒ1/10ͷੑೳ͕ͰΕྑ͍ํ
Graphiteνϡʔχϯά • ioDriveͷIOPSΛ͍ΔલʹCPUϦιʔεΛ͍͖ͬ ͯ͠·͏ͨΊɺCPUΛઅͯ͠I/Oʹ͚Δߟ͑ํ • random writeʹڧ͍ߴͳσΟεΫͳͨΊɺجຊతʹ carbonI/Oεέδϡʔϥʹ༨ܭͳ࠷దԽΛͤ͞ͳ͍ • ιʔτʹΑΔI/OޮԽI/OϦιʔεΛ͍͖Βͳ͍
ͨΊͷ੍ݶͷύϥϝʔλ͕͋Δ • echo noop > /sys/block/fioa/queue/scheduler
GraphiteΫϥελߏ (timestamp, name, value) graphite-web carbon carbon … … LB
carbon carbon … … LB LB carbon carbon … …
ৄ͘͠ϒϩάͰ http://blog.yuuk.io/entry/high-performance-graphite
͘͡ 1. Mackerelͱ࣌ܥྻσʔλ 2. GraphiteͷΞʔΩςΫνϟͱੑೳঢ়گ 3. σΟεΫεϥογϯάͱͦͷղܾ 4. ·ͱΊ
write IOPS read IOPS ಥવͷreadෛՙ૿େ
ͳʹ͕ى͖ͨͷ͔ • read IOPS͕૿Ճ͠ɺwrite IOPS͕ݮগ͍ͯ͘͠ • ϝϞϦෆʹΑΔSwapྖҬͷ༻ͳ͠ɻOSͷϝϞϦ ༻ྔ1/3ఔͩͬͨ • αʔϏεͷಥൃతͳΞΫηε૿Ճͳ͠
• sar -BͰɺҰఆ࣌ؒͷϖʔδΠϯͱϖʔδΞτͷ͕ ҟৗʹ૿͍͑ͯͨ͜ͱ͕໌ • ͜ͷݱΛσΟεΫεϥογϯάͱݺͿ͜ͱʹ͢Δ • LinuxͷϖʔδΩϟογϡͷΈͱGraphiteͷI/Oύ λʔϯ͔ΒݪҼΛਪͨ͠
LinuxͷϖʔδΩϟογϡ • ϝϞϦͷ༁ = used + buffers/caches + free •
ϑΝΠϧγεςϜ͔ΒσʔλΛಡΈࠐΉ/ॻ͖ࠐΉͱɺ࣍ճ Ҏ߱ߴʹಡ·ͤΔͨΊʹɺOS͕ϖʔδ୯ҐͰσΟεΫ্ ͷσʔλΛϝϞϦʹࡌͤΔ • ϖʔδΩϟογϡͱݺͿ • ϖʔδΩϟογϡLRUΞϧΰϦζϜɻ࠷ۙࢀর͞Εͨ Ωϟογϡσʔλ͠ɺࢀর͞Εͳ͍ݹ͍Ωϟογϡσʔ λΛফ͢ • ϖʔδΩϟογϡ௨ৗϝϞϦ༻ྔʹؚ·Εͳ͍
GraphiteͷI/Oύλʔϯ • 1ҎʹશͯͷΞΫςΟϒͳwhisperϑΝΠϧʹॻ͖ ࠐΉͨΊɺσΟεΫͷൣғʹͬͯॻ͖ࠐΈ͕Δ • whisperͷϝτϦοΫॻ͖ࠐΈૢ࡞ɺwrite(2)͚ͩͰ ͳ͘ɺϝλσʔλͷಡΈࠐΈΦϑηοτܭࢉͷͨΊ ͷread(2)Δ • ϖʔδΩϟογϡread͚ͩͰͳ͘writeʹ༗ޮ
(Direct I/Oআ͘) • GraphiteϗετେྔͷϖʔδΩϟογϡΛͭ
read IOPS૿ͷݪҼ • ϖʔδΠϯͱϖʔδΞτճ͕ଟ͍ͱ͍͏͜ͱɺ LRUʹΑΓݹ͍Ωϟογϡ͕͍ग़͞Ε͍ͯΔ • whisperॻ͖ࠐΈͷreadͰϖʔδΩϟογϡ͕ޮ͔ͳ͘ ͳͬͨ݁Ռɺread IOPS͕૿͑ͨ Memory
used page cache page in page out
ϖʔδΩϟογϡͷઅ • ࡌϝϞϦΛ૿͢͜ͱͰҰԠղܾͰ͖Δ͕ɺ͢Ͱʹ 126GB RAMͳͷͰɺແବͳϖʔδΩϟογϡΛݮ͍ͨ͠ • writeͨ͠σʔλΛ͙͢ʹಡΉͱݶΒͳ͍ͨΊɺwrite࣌ͷ σʔλΛΩϟογϡʹͷͤͳ͍ => Direct
I/O • ͔͠͠ɺDirect I/OΛ͏ͨΊʹɺϒϩοΫαΠζͰϝϞ ϦΞϥΠϝϯτΛἧ͑Δඞཁ͕͋Δ => PythonͰΔͷ͕ ͱͯ໘ (malloc => posix_memalign) • posix_fadvise(2)Λͬͯղܾ
posix_fadvise(2) • ϓϩηε͕ΧʔωϧϑΝΠϧσʔλͷΞΫηεύλʔϯΛ ௨ • Χʔωϧࢦఆ͞ΕͨΞΫηεύλʔϯʹԠͯ͡I/Oੑೳ͕ ্͢ΔΑ͏ʹ࠷దԽ • ΞΫηεύλʔϯ •
POSIX_FADV_SEQUENTIAL: 2ഒͷઌಡΈ • POSIX_FADV_RANDOM: ઌಡΈఀࢭ • POSIX_FADV_DONTNEED: Ωϟογϡͨ͠ϖʔδͷղ์ • etc int posix_fadvise(int fd, off_t offset, off_t len, int advice);
posix_fadvise(2)ΛGraphiteʹద༻ • ࠷ॳɺϖʔδΩϟογϡΛམͱ͢Φϓγϣϯʹண • whisperͷॻ͖ࠐΈϩδοΫ݁ߏෳࡶͳͨΊɺwriteʹ ΑΔϖʔδΩϟογϡ෦͚ͩΛམͱ͢ͷ͕͍͠ • FAD_RANDONʹΑΓɺઌಡΈΛͤͣඞཁͳϖʔδ͚ͩ Ωϟογϡ͢ΔΑ͏ʹͨ͠ •
whisperͷॻ͖ࠐΈͰγʔέϯγϟϧʹᢞΊΔॲཧͳ͍ • ઌಡΈ͍ͯͨ͠ແବͳϖʔδΩϟογϡ͕ݮͬͨ Active(file): 5387160 kB Inactive(file): 37566804 kB Active(file): 32252136 kB Inactive(file): 7231020 kB /proc/meminfo before & after
GraphiteͷPull Request
Pull Request༰ • มߋ༰͞΄Ͳ͘͠ͳ͍ • fadvise ϞδϡʔϧΛ͏ • straceͯ͠posix_fadvise͕Ͱͯ͘Εok •
ৗʹfadvise͢Δͷ͕Α͍͔Θ͔Βͳ͍ͨΊɺઃఆϑΝΠϧ ʹΑΔ༗ޮɾແޮΛΓସ͑ΒΕΔΑ͏ʹ (σϑΥϧτແޮ) • Ϛʔδͯ͠Β͏·Ͱ1ϲ݄͘Β͍͔͔ͬͨ with open(path, 'r+b') as fh: if CAN_FADVISE and FADVISE_RANDOM: posix_fadvise(fh.fileno(), 0, 0, POSIX_FADV_RANDOM)
ςετεΫϦϓτʹΑΔݕূ https://gist.github.com/yuuki/8d5d386115b0f01b5371 • whisperͷॻ͖ࠐΈؔΛͬͯɺ࣮ࡍʹϖʔδΩϟο γϡͷྔ͕ݮΔ͔Ͳ͏͔֬ೝ • 100ݸͷwhisperϑΝΠϧʹରͯ͠100ݸͷσʔλϙΠϯ τΛॻ͖ࠐΉεΫϦϓτ • /proc/<pid>/io
ͷread_bytes(࣮ࡍʹσΟεΫ͔ΒಡΈͩ ͨ͠αΠζ)ΛΈΔ • POSIX_FAD_RANDOMΦϓγϣϯΛ͚ͭΔͱϖʔδ Ωϟογϡྔ͕1/2ʹͳͬͨ
͘͡ 1. Mackerelͱ࣌ܥྻσʔλ 2. GraphiteͷΞʔΩςΫνϟͱੑೳঢ়گ 3. σΟεΫεϥογϯάͱͦͷղܾ 4. ·ͱΊ
·ͱΊ • MackerelͰ 1,000,000 metrics/min + ͷϝτϦοΫ ॻ͖ࠐΈΛࡹ͘ඞཁ͕͋Δ • ࣌ܥྻσʔλϕʔεͱͯ͠GraphiteΛબ
• ioDriveલఏͰOSͤͷνϡʔχϯά • σΟεΫεϥογϯάΛposix_fadviseʹΑΓ writebackʹΑΔϖʔδΩϟογϡΛແޮʹ͢Δύον Ͱղܾ
None
1ҎԼͷཻͷϝτϦοΫ ཻΛଛͳΘͣظอଘ ϦΞϧλΠϜͳҟৗݕ
࣍ੈͷ࣌ܥྻσʔλϕʔεʹ ৽͍ͨ͠
http://hatenacorp.jp/recruit/fresh/operation-engineer ٕज़͕͖ͳਓ
ຊεϥΠυͷKeynoteςϯϓϨʔτͱͯ͠ shoya140͞ΜͷZebra(http://shoya.io/blog/zebra/) ΛΘ͍͖ͤͯͨͩ·ͨ͠ Mackerelʹ͓͚Δ ࣌ܥྻσʔλϕʔεͷੑೳվળ ϖύϘɾͯͳٕज़େձʙΠϯϑϥٕज़ج൫ʙ@Ԭ ͯͳ id:y_uuki