Upgrade to Pro — share decks privately, control downloads, hide ads and more …

博士課程での研究まとめ 2023年1月版 / Summary of my research i...

博士課程での研究まとめ 2023年1月版 / Summary of my research in the PhD course

Avatar for Yuuki Tsubouchi (yuuk1)

Yuuki Tsubouchi (yuuk1)

February 13, 2023
Tweet

More Decks by Yuuki Tsubouchi (yuuk1)

Other Decks in Research

Transcript

  1. Ϋϥ΢υܕΞϓϦέʔγϣϯͷߴՄ؍ଌੑ 
 ʹؔ͢Δݚڀ ݚڀ୊໨ Studies on High Observability of Cloud

    Applications Ϋϥ΢υܕΞϓϦέʔγϣϯͷ؍ଌγεςϜ 
 ʹ͓͚Δܭଌɾอଘɾղੳͷෛՙʹؔ͢Δݚڀ A Study on Loads of Measurement, Storage, and Analysis 
 in Observation Systems for Cloud Applications ީิᶃ ީิᶄ
  2. 3 ৘ใγεςϜʹ͓͚Δʮ৴པੑʯ ෳࡶͳγεςϜʹର͢Δߴස౓ͷมߋͱߴ৴པੑΛཱ྆͢ΔͨΊͷ 
 ޻ֶతΞϓϩʔν͕ඞཁͱ͞Ε͍ͯΔ ݱࡏͷ৘ใγεςϜ͸ɺΠϯλʔωοτΛհͨ͠Ϋϥ΢υίϯϐϡʔςΟϯά ʹΑΔఏڙ͕ҰൠతͰ͋Δ Ϋϥ΢υ Ϧιʔεڞ༗ɺ޿ҬωοτϫʔΫɺҟछι ϑτ΢ΣΞ/ϋʔυ΢ΣΞɺͦΕΒͷෳࡶ

    ͳ૬ޓ࡞༻Λ੒͢γεςϜ Πϯλʔωοτ Ϋϥ΢υܕ 
 ΞϓϦέʔγϣϯ ઌ୺اۀͰ͸ɺ1೔ෳ਺ճҎ্ͷػೳมߋ [Humble+, 2018] Accelerate: The Science of Lean Software and DevOps: Building and scaling high performing technology organizations [Beyer+, 2016] Site Reliability Engineering: How Google Runs Production Systems [Humble+, 2018] [Beyer+, 2016]
  3. 4 2. ӡ༻ऀʹΑΓએݴ͞Εͨ๬·͠ ͍ঢ়ଶʹ௥ै͢Δࣗಈ੍ޚ 3. ӡ༻ऀʹΑΔखಈ੍ޚ Ϋϥ΢υͷނোɾো֐ʹର͢Δ੍ޚߏ଄Ϟσϧ • ίϯϙʔωϯτ΍௨৴ϨϕϧͰͷ 


    ނো΍ྼԽରԠ • ఻ૹ੍ޚɾܦ࿏੍ޚɺ෼ࢄ߹ҙͳͲ • ܭࢉػΫϥελͷ 
 ల։ɾࣗಈ৳ॖɾ؅ཧ • OpenStackɺKubernetes 
 ͳͲͷΦʔέετϨʔλʔ • ৴པੑͷ໨ඪ஋Λຬͨ͢Α͏ʹ 
 ো֐ʹରͯ͠खಈͰରԠ • ༧๷ɾ༧ଌɾݕ஌ɾݪҼ਍அɾ 
 ճ෮ɾࣄޙ෼ੳɾ࠶ൃ๷ࢭ ຊݚڀͰ͸ɺ3.ӡ༻ऀʹΑΔखಈ੍ޚ ʹண໨͢Δ Service-level Component-level System-level 1. ϓϩτίϧʹ 
 جͮࣗ͘ಈ੍ޚ ʢϑΥʔϧττϨϥϯεʣ
  4. 5 ੍ޚͷͨΊͷ಺෦ঢ়ଶͷ؍ଌٕज़ ඃ؍ଌγεςϜ σʔλετΞ ӡ༻ऀ ؍ଌγεςϜ ܭଌث ՄࢹԽ OSɾΞϓϦέʔγϣϯ 


    ͷܭ૷ʹΑΓܭଌՄೳ ΞϓϦέʔγϣϯ ӡ༻σʔλ ੍ޚ ઐ༻ͷ؍ଌγεςϜ͕ӡ༻σʔλΛܭଌɾอଘɾՄࢹԽ [Hauser+, CLOUD2018] ܯใ ӡ༻ऀ͕σʔλ͔Β಺෦ঢ়ଶΛཧղ 
 Ͱ͖ΔΑ͏ʹ͢Δ=Մ؍ଌੑΛ΋ͨͤΔ
  5. 6 ӡ༻σʔλࣗಈղੳٕज़ʹΑΔՄ؍ଌੑͷ޲্ ӡ༻σʔλετΞ ӡ༻ऀ ো֐༧ଌ [Notaro+, TIST2021]: A Survey of

    AIOps Methods for Failure Management. [Soldani+, CSUR2022]: Anomaly Detection and Failure Root Cause Analysis in (Micro) Service-Based Cloud Applications: A Survey [Notaro+, TIST2021] [Soldani+, CSUR2022] ӡ༻σʔλࣗಈղੳث ো֐ݕ஌ ো֐ͷނোՕॴಛఆ ʢ౷ܭɾػցֶशʣ ਺஋ͷ࣌ܥྻσʔλ ωοτϫʔΫ௨৴ͷґଘؔ܎ [Kim+, PER2013] [Chen+, INFOCOM2014] [Lin, ICSOC2018] [Qiu+, Applied Science2020] [Wu+, NOMS2020] [Aggarwal+, CLOUD2021] ΞϓϦέʔγϣϯίʔυͷ 
 վมͳ͠Ͱܭ૷Մೳͳӡ༻σʔλ ϝτϦΫε ίʔϧάϥϑ ࣌ؒɾۭؒσʔλΛ 
 ༻͍ͨղੳख๏
  6. 7 ӡ༻σʔλ૿େͷ໰୊ ΞϓϦέʔγϣϯ ղੳث σʔλετΞ ղੳෛՙ㽉 ܭଌෛՙ㽉 อଘෛՙ㽉 ಛʹো֐ൃੜ࣌ʹ͸ 


    ୹࣌ؒͰͷղੳ͕ٻΊΒΕΔ ΞϓϦέʔγϣϯ͕େن໛ԽɾෳࡶԽ͢ΔʹͭΕͯɺඞཁͳӡ༻σʔλ͕૿େ ӡ༻σʔλͷ૿େʹΑΓɺܭଌɾอଘɾղੳෛՙ͕૿େ ӡ༻σʔλͷ 
 ࣍ݩ਺ͷ૿େ ӡ༻σʔλͷॻ͖ࠐΈճ਺ ͱอଘྔͷ૿େ ܭଌ࣌ͷσʔλ 
 ॲཧෛՙͷ૿େ
  7. 8 ݚڀ໨త ӡ༻σʔλͷ૿େͷࡍʹൃੜ͢Δɺ؍ଌγεςϜʹΑΔ ܭଌɾอଘɾղੳͷ֤ෛՙͷݦஶͳ՝୊Λղܾ ৚݅ ޿͘ීٴ͢Δٕज़ͷ࿮૊ΈͷதͰ՝୊Λղܾ͢Δ͜ͱʹΑΓɺӡ༻ऀ ΁ͷ௥Ճͷӡ༻ෛ୲Λܰݮ͢Δ ܭଌෛՙ อଘෛՙ ղੳෛՙ

    ίʔϧάϥϑΛܭଌ͢Δ ࡍͷCPUෛՙΛ௿ݮͤ͞ Δख๏ͷఏҊ ϝτϦΫεͷૠೖෛՙͷ ௿ݮͱอଘظؒͷ௕ظԽ Λཱ྆͢ΔΞʔΩςΫ νϟͷఏҊ ϝτϦΫε਺ͷ૿େʹର ͯ͠ɺߴ଎ʹ໰୊ۭؒΛ ॖখ͢Δख๏ΛఏҊ ݚڀ՝୊̍ɿ ݚڀ՝୊̎ɿ ݚڀ՝୊̏ɿ
  8. 10 [ݚڀ՝୊1] ίʔϧάϥϑͷܭଌෛՙ ௨৴ͷґଘΛܭଌ͢ΔͨΊʹ͸ɺ௨৴ܦ࿏Λ๣ड͢Δඞཁ͕͋Δ ιέοτϨϕϧ ύέοτϨϕϧ αʔό΍εΠον্Ͱ パ έοτΛ๣ड͠ɺϔομ಺ͷૹड৴ΞυϨεͱ ϙʔτ൪߸͔ΒґଘΛൃݟ͢Δ

    αʔόͷOSΧʔωϧ಺ͰTCP/UDPͷ௨৴ܦ࿏ͷऴ୺ʢιέοτʣʹର͢Δ ΠϕϯτΛܭଌ͢Δ ୯ҰͷTCP઀ଓ͸ෳ਺ͷύέοτͷϥ΢ϯυτϦοϓͰߏ੒͞ΕΔͨΊɺ ιέοτϨϕϧͷ΄͏͕ܭଌෛՙ͕௿͍ ຊݚڀͰண໨
  9. Y. Tsubouchi, et al., Low Overhead TCP/UDP Socket-based Tracing for

    Discovering Network Services Dependencies, Journal of Information Processing 2022. [ݚڀ՝୊1] ఏҊख๏ . . . Kernel User Service Socket Tracing 
 Process … Event Event Event ετϦʔϛϯά๏(Weave Scope) ϑϩʔू໿๏ ([Datadog], [SAC 20]) ϑϩʔूଋ๏ʢఏҊʣ . . . Kernel Service Socket Tracing 
 Process . . . Event Flow Event Event Event … … . . . . . . User Service Socket Tracing 
 Process . . . ✗ ΧʔωϧˠϢʔβۭؒؒ ͷΠϕϯτͷίϐʔίετ ✗ TCP઀ଓϨʔτ͕૿Ճ͢Δ ͱɺίϐʔίετ͕૿Ճ ෳ਺ͷϑϩʔΛूଋ ϑϩʔ= ྆୺ͷΞυϨεͱϙʔτͷ ૊ʢλϓϧʣ͕ಉҰͷ௨৴୯Ґ Event Event … … Event Event . . . Event Event … Event Event . . . Ұൠతʹ௨৴͸OSΧʔωϧͷTCP/UDPΛ࢖༻͢Δ͜ͱ ʹண໨ 11
  10. 12 ɾఏҊख๏͸ɺCPUར༻཰͸2.2%ҎԼɻ ɾϑϩʔ਺ͷ૿େʹରͯ͠ɺϑϩʔूଋʹΑΓɺ 
 CPUར༻཰Λ௿͘ҡ͍࣋ͯ͠Δ [ݚڀ՝୊1] ϑϩʔ਺ͷ૿େʹର͢ΔCPU࢖༻ྔͷมԽ ఏҊख๏ Y. Tsubouchi,

    et al., Low Overhead TCP/UDP Socket-based Tracing for Discovering Network Services Dependencies, Journal of Information Processing 2022. 0 5 10 15 20 25 5 10 15 20 25 30 35 CPU usage / core (%) TCP round trips / sec (x103) Streaming(client) Streaming(server) In-Kernel-Aggr(client) In-Kernel-Aggr(server) In-Kernel-Bundling(client) In-Kernel-Bundling(server)
  11. 14 [ݚڀ՝୊2] ϝτϦΫεͷॻ͖ࠐΈճ਺ͱอଘྔͷߴޮ཰Խ ϝϞϦ 
 ϕʔεDB σΟεΫ 
 ϕʔεDB σʔλ఺

    
 ૠೖ dݸͷσʔλ఺Λ 
 ஝ੵޙόονॻ͖ࠐΈ ఏҊɿೋछDBͷ֊૚Խ M 
 (/s) M / d 
 (/s) σΟεΫϕʔε ෼ࢄDB ϝϞϦϕʔε 
 ෼ࢄDB ࡧҾߏ଄͕ฏߧ໦ 
 ϝτϦΫε਺nͱ͢Δͱ O(log n)ͷܭࢉྔ ϝϞϦ 
 ϕʔεDB ϋογϡද O(k) ฏߧ໦ O(log n) σΟεΫ 
 ϕʔεDB OpenTSDB(HBase) KairosDB(Cassandra) … Redis 
 ࡧҾߏ଄͕ϋογϡද 
 O(n)ͷܭࢉྔ ॻ͖ࠐΈෛՙ͸ϝϞϦϕʔε DB͕୲͍ɺσʔλͷ௕ظอଘ ͸σΟεΫϕʔεDB͕୲͏ ௕ظอଘ޲͖ ௕ظอଘෆ޲͖
  12. 15 [ݚڀ՝୊2] ܥྻ਺ͷ૿Ճʹର͢ΔૠೖεϧʔϓοτมԽ ɾσΟεΫϕʔεDBͷΈͱൺֱ͠ɺ ࠷େͰ3.96ഒͷεϧʔϓοτ ɾεϧʔϓοτͷ௿Լ཰΋վળͨ͠ 0 20 40 60

    80 100 100 1K 10K 100k 1M 0 20 40 60 Insertion throughput (kilo datapoints / sec) Throughput decrease rate (%) The number of series HeteroTSDB (Proposed) KairosDB HeteroTSDB (Proposed) KairosDB ϝϞϦDB → σΟεΫDBͷҠಈεϧʔ ϓοτͱϝϞϦDB΁ͷεϧʔϓοτͱ ಉఔ౓ 0 20 40 60 80 100 0 300 600 900 1200 1500 1800 0 500 1000 1500 2000 Insertion throughput (kilo datapoints / sec) Memory used size (MB) Elapsed time (sec) Flushed datapoints (/sec) Memory used size (MB)
  13. 16 [ݚڀ՝୊3] ϝτϦΫεͷղੳෛՙͷ௿ݮͷ՝୊ ɾো֐ݕ஌ޙͷ୹࣌ؒͰͷނোՕॴಛఆͷͨΊʹɺଟ࣍ݩϝτϦΫεͷ࣍ݩ࡟ ݮख๏ʹண໨ จݙ໊ ϝτϦΫε਺ ࣍ݩ࡟ݮʢख๏ʣ ނোՕॴಛఆ [PatternMatcher

    21] 260K ҟৗݕ஌ʢKSݕఆʣ CNNʹΑΔ ҟৗύλʔϯ෼ྨ + ҟৗ౓ϥϯΩϯά [FluxInfer 20] 12K ҟৗݕ஌ʢࠞ߹ਖ਼ن෼෍ʣ ҼՌάϥϑ + PageRank [FluxRank 19] 541K ҟৗݕ஌ʢΧʔωϧີ౓ਪఆʣ 
 ΫϥελϦϯάʢDBSCANʣ ϥϯΩϯάֶश ɾ ʮඇܧଓதͷҟৗʯ΍ʮॠؒతͳҟৗʯΛਖ਼ৗͱ෼ྨ͢Δِཅੑ͋Γ ɾ·ͨ͸ɺϝτϦΫεͷछྨ͝ͱͷௐ੔͕ඞཁ
  14. ࣌ܥྻͷपظͰ͸ͳ͘ɺزԿతͳҟ ৗͷಛ௃Λଊ͑Δख๏ͷఏҊ 17 [ݚڀ՝୊3] ࣍ݩ࡟ݮ๏ͷϑϨʔϜϫʔΫԽ ো֐ 
 ݕ஌ ނোՕॴ 


    ಛఆ ࣍ݩ࡟ݮ ௶಺༎थ΄͔, TSifter: ϚΠΫϩαʔϏεʹ͓͚Δੑೳҟৗͷਝ଎ͳ਍அʹ޲͍ͨ࣌ܥྻσʔλͷ࣍ݩ࡟ݮख๏, Πϯλʔωοτͱӡ༻ٕज़γϯϙδ΢Ϝ࿦จू, 2020೥. ఏҊɿނোՕॴಛఆ޲͚ͷ࣍ݩ࡟ݮ๏Λෳ਺ͷϑΣʔζʹ෼ྨ͠ɺطଘͷख๏ ͷِཅੑͷ՝୊Λղܾ͢Δ ϑΣʔζ1ɿΦϑϥΠϯҟৗݕ஌ ࣌ܥྻͷܗঢ়ͷྨࣅੑʹج͍ͮͨΫ ϥελϦϯάΛ࣮ߦ ֤Ϋϥελͷॏ৺ͱͳΔ୅දϝτϦ ΫεΛநग़ ϑΣʔζ̎ɿܗঢ়ྨࣅੑΫϥελϦϯά
  15. 18 [ݚڀ՝୊3] ࠶ݱ཰ɺϝτϦΫε࡟ݮੑೳɺߴ଎ੑͷධՁ ʮ࣍ݩ࡟ݮʯˠʮނোՕॴಛఆʯͷ౷߹ධՁ ɾ࣍ݩ࡟ݮͳ͠ɺطଘͷ࣍ݩ࡟ݮ๏ͱൺֱ͠ɺTop-k ͷಛఆੑೳ͕ʓʓ%޲্ ɾϝτϦΫε਺Λ1k ͔Β10kʹ૿Ճͯ͠΋ɺطଘख๏ͱൺֱ͠ɺಛఆੑೳͷ ௿Լ཰͕খ͍͞ σʔλ

    
 ηοτ খن໛ɿϝτϦΫε਺ 1k ݸ େن໛ɿϝτϦΫε਺ 10k ݸ ʮ࣍ݩ࡟ݮʯͷ෦ҐධՁ ɾϑΣʔζ̍ɿఏҊख๏ͷ࠶ݱ཰ʢRecallʣ͕97% ɾϑΣʔζ̎ɿະ੔ཧ εϥΠυ࡞੒࣌఺Ͱ͸ɺطଘͷނোՕॴಛఆख ๏͕खݩͷσʔληοτͰ͸ඇৗʹ௿͍ಛఆੑ ೳΛࣔ͢͜ͱʹ೰·͞Ε͍ͯΔ
  16. 19 ݁࿦ Ϋϥ΢υܕΞϓϦέʔγϣϯͷՄ؍ଌੑΛ޲্ͤ͞Δࡍͷӡ༻σʔλྔͷ૿େ ʹର͢ΔܭଌɾอଘɾղੳͷෛՙΛ௿ݮͤ͞Δख๏ΛఏҊͨ͠ อଘ ෛՙ ղੳ ෛՙ ܭଌ ෛՙ

    ɾίʔϧάϥϑͷܭଌʹண໨͠ɺLinuxΧʔωϧ಺ͷιέοτͷΠϕϯτΛϑϩʔ୯ ҐͰऩଋ͢Δܭ૷ํࣜΛఏҊͨ͠ ɾಛʹTCP୹໋઀ଓ͕ଟ͍؀ڥͰͷCPUར༻཰Λ௿ݮͤͨ͞ ɾϝτϦΫε਺ͷ૿େʹରͯ͠ɺϝϞϦϕʔεDBͱσΟεΫϕʔεDBͷࡧҾߏ ଄ͷࠩҟʹண໨͠ɺೋछͷDBΛ֊૚Խ͢ΔΞʔΩςΫνϟΛఏҊͨ͠ ɾσΟεΫϕʔεDBͷΈͱൺֱ͠ɺ࠷େͰ3.96ഒͷεϧʔϓοτ ɾ࣍ݩ਺ʢϝτϦΫε਺ʣͷ૿େʹରͯ͠ɺҟৗݕ஌ͱ࣌ܥྻͷྨࣅ౓ΫϥελϦ ϯάͷೋஈ֊ͷ࣍ݩ࡟ݮ๏ΛఏҊͨ͠ ɾ࠶ݱ཰Λʓʓ%ɺ˚˚%ͷ࣍ݩ࡟ݮ཰Λୡ੒ͨ͠
  17. 21 ɾ Y. Tsubouchi, M. Furukawa, R. Matsumoto, Low Overhead

    TCP/UDP Socket-based Tracing for Discovering Network Services Dependencies, Journal of Information Processing (JIP), Vol.30, pp.260-268, 2022೥3݄. ͜Ε·Ͱͷݚڀۀ੷: ओͳࠪಡ෇͖࿦จ δϟʔφϧ࿦จ ࠃࡍձٞ ɾ Y. Tsubouchi, M. Furukawa, R. Matsumoto, Transtracer: Socket-Based Tracing of Network Dependencies among Processes in Distributed Applications, The 1st IEEE International COMPSAC Workshop on Advanced IoT Computing (AIOT 2020), July 2020. ࠃ಺γϯϙδ΢Ϝ ɾ ௶಺༎थ, ࿬ࡔேਓ, ᖛా݈, দ໦խ޾, খྛོߒ, Ѩ෦ത, দຊ྄հ, HeteroTSDB: ҟछ෼ࢄKVSؒͷࣗಈ֊૚Խ ʹΑΔߴੑೳͳ࣌ܥྻσʔλϕʔε, ৘ใॲཧֶձ࿦จࢽ, Vol.62, No.3, pp.818-828, 2021೥3݄. ɾ Y. Tsubouchi, A. Wakisaka, K. Hamada, M. Matsuki, H. Abe, R. Matsumoto, HeteroTSDB: An Extensible Time Series Database for Automatically Tiering on Heterogeneous Key-Value Stores, The 43rd Annual IEEE International Computers, Software & Applications Conference (COMPSAC), pp. 264-269, July 2019. ɾ ௶಺༎थ, ௽ాതจ, ݹ઒խେ, TSifter: ϚΠΫϩαʔϏεʹ͓͚Δੑೳҟৗͷਝ଎ͳ਍அʹ޲͍ͨ࣌ܥྻσʔλ ͷ࣍ݩ࡟ݮख๏, Πϯλʔωοτͱӡ༻ٕज़γϯϙδ΢Ϝ࿦จू, 2020, 9-16 (2020-11-26), 2020೥12݄. ɾ ௶಺༎थ, ҏ໺จ඙, ஔాਅੜ, ࢁ઒૱, ദ໦ַ඙, ഡݪ݉Ұ, ॏෳഉআετϨʔδͷͨΊͷSHA-1 ܭࢉγεςϜͷSSE໋ྩʹΑΔߴεϧʔϓοτԽ, ిࢠ৘ใ௨৴ֶձ࿦จࢽ D, 96(10), pp.2101-2109 2013೥10݄. ʢത࢜࿦จʹؚΊͣʣ ɾ ௶಺༎थ, ੨ࢁਅ໵, MeltriaɿϚΠΫϩαʔϏεʹ͓͚Δҟৗݕ஌ɾݪҼ෼ੳͷͨΊͷσʔληοτͷಈతੜ੒ γεςϜ, Πϯλʔωοτͱӡ༻ٕज़γϯϙδ΢Ϝ࿦จू, 2021, 63-70 (2021-11-18), 2021೥11݄.
  18. 22 ͜Ε·Ͱͷݚڀۀ੷ɿͦͷଞ ࠃ಺ߨԋ ɾ ௶಺༎थ, ௽ాതจ, AI࣌୅ʹ޲͚ͨΫϥ΢υʹ͓͚Δ৴པੑΤϯδχΞϦϯάͷະདྷߏ૝, ϚϧνϝσΟΞɺ ෼ࢄɺڠௐͱϞόΠϧʢDICOMO2022ʣγϯϙδ΢Ϝ, 2022೥7݄14೔.

    ɾ ௶಺༎थ, AIOpsݚڀ࿥ʕSREͷͨΊͷγεςϜো֐ͷࣗಈݪҼ਍அ, SRE NEXT 2022 ONLINE, 2022೥5݄. ࠃ಺ձٞ࿥ʢࠪಡͳ͠ʣ ɾ ྛ༑Ղ, দݪࠀ໻, ࿯๺ݡ, ௶಺༎थ, ϚΠΫϩαʔϏεܕγεςϜͷ؂ࢹʹ͓͚ΔμογϡϘʔυUIઃܭʹىҼ ͢Δঢ়گೝࣝ΁ͷӨڹ, No.2022-IOT-56, Vol.38, pp.1-8, 2022೥3݄. ɾ দຊ྄հ, ௶಺༎थ, ΫϥΠΞϯτϓϩηεͷݖݶ৘ใʹجͮ͘TCPΛհͨ͠ಁաతͳݖݶ෼཭ํࣜͷઃܭ, ৘ ใॲཧֶձݚڀใࠂΠϯλʔωοτͱӡ༻ٕज़ʢIOTʣ, No.2020-IOT-49, Vol.11, pp.1-6, 2020೥5݄. ɾ ྛ༑Ղ, ҏ੎ా࿇, দݪࠀ໻, ࿯๺ݡ, ௶಺༎थ, দຊ྄հ, ಈతదԠੑΛ࣋ͭ෼ࢄγεςϜΛର৅ͱͨ͠γεςϜ ঢ়ଶՄࢹԽख๏ͷݕ౼, ৘ใॲཧֶձݚڀใࠂΠϯλʔωοτͱӡ༻ٕज़ʢIOTʣ, No.2020-IOT-48, Vol.22, pp.1-8, 2020೥3݄. ɾ ௶಺༎थ, ෼ࢄΞϓϦέʔγϣϯͷ৴པੑ؍ଌٕज़ʹؔ͢Δݚڀ, SRE NEXT 2020 IN TOKYO, 2020೥1݄25೔