Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深層学習は奔流に身をまかせ / Get Drowned in the Flood for De...
Search
Henry Cui
February 17, 2023
Technology
0
200
深層学習は奔流に身をまかせ / Get Drowned in the Flood for Deep Learning
Henry Cui
February 17, 2023
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
0
84
Direct Preference Optimization
zchenry
0
280
Diffusion Model with Perceptual Loss
zchenry
0
240
レンズの下のLLM / LLM under the Lens
zchenry
0
150
Go with the Prompt Flow
zchenry
0
140
Mojo Dojo
zchenry
1
180
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
370
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
170
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
84
Other Decks in Technology
See All in Technology
Terraform CI/CD パイプラインにおける AWS CodeCommit の代替手段
hiyanger
1
190
Evangelismo técnico: ¿qué, cómo y por qué?
trishagee
0
320
フルカイテン株式会社 採用資料
fullkaiten
0
40k
"君は見ているが観察していない"で考えるインシデントマネジメント
grimoh
4
1.1k
Deno+JSRでパッケージを作って公開する
askua
0
120
形式手法の 10 メートル手前 #kernelvm / Kernel VM Study Hokuriku Part 7
ytaka23
5
820
今、始める、第一歩。 / Your first step
yahonda
2
730
私はこうやってマインドマップでテストすることを出す!
mineo_matsuya
0
310
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
1
160
透過型SMTPプロキシによる送信メールの可観測性向上: Update Edition / Improved observability of outgoing emails with transparent smtp proxy: Update edition
linyows
2
200
Redmine 6.0 新機能評価ガイド
vividtone
0
310
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
Featured
See All Featured
Gamification - CAS2011
davidbonilla
80
5k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
329
21k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
43
2.2k
Code Review Best Practice
trishagee
64
17k
A designer walks into a library…
pauljervisheath
202
24k
Building Applications with DynamoDB
mza
90
6.1k
We Have a Design System, Now What?
morganepeng
50
7.2k
Docker and Python
trallard
40
3.1k
Transcript
深層学習は奔流に身をまかせ 機械学習の社会実装勉強会第20回 Henry 2023/2/18
モチベーション ▪ ペインポイント • 深層モデルの学習で望ましい効果を素早く得るのは難しい • 実データのラベルにノイズが多い • その問題点の一つに、過適合が挙げられる ▪
過適合を解消するための様々な正則化手法がある • weight decay や learning rate scheduler • Pytorchで簡単に使える ▪ 今日は最近の研究から、実用性が高い新しい正則化手法を 紹介する • 特に実装が楽 • まだあまり知られていない 2
紹介する論文 ▪ Do We Need Zero Training Loss After Achieving
Zero Training Error?, Ishida et al., ICML 2020 • Floodingという新しい正則化手法を導入 ▪ iFlood: A Stable and Effective Regularizer, Xie et al., ICLR 2022 • Floodingの計算式を少しだけ改良 3
Ishida et al., ICML 2020 ▪ モチベーション • 学習データでの損失を0まで学習を行ったほうが良いと言われる •
しかし、これは本当に必要なのか • 正則化手法は、学習データでの損失を過度に最小化しないための間 接的な手法と見なせる ▪ 直接学習損失の最小化を制限する手法:Flooding • 実装も簡単 • 学習損失は0じゃなくても、学習精度が100%の可能性もある 4
Ishida et al., ICML 2020 ▪ 提案法は以下の性質をすべて満たす初めての正則化手法 • 学習損失を直接制限する •
特定の問題ドメインに依存しない • 特定のタスクに依存しない • 特定のモデルに依存しない ▪ 提案法の仮設もシンプルで、「0の学習損失が有害」のみ ▪ 検証損失の二重降下に関する初めて研究 5
Ishida et al., ICML 2020 ▪ 人工データで有意な性能向上 6
Ishida et al., ICML 2020 ▪ 実データでも有意な性能向上 ▪ その他、Floodingによる勾配値の変化や解の平坦性なども調 査
7
Xie et al., ICLR 2022 ▪ Floodingにデータインスタンスの勾配が乖離する問題 • バッチで平均を取るので、同じバッチにある他のデータインスタンスの 損失に依存する
▪ 提案手法:絶対値をバッチで取るではなく、各データインスタン スレベルで取るので、indivisual Flood (iFlood)と呼ぶ ▪ 各手法のインスタンスの損失のヒストグラム 8
Xie et al., ICLR 2022 ▪ 確かに性能向上につながる ▪ その他も、勾配のノルムやノイズ耐性などを検証 9
まとめ ▪ 実用性高い正則化手法のFloodingとその改良版のiFlood ▪ 実装がシンプルで試しやすい 10