Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深層学習は奔流に身をまかせ / Get Drowned in the Flood for De...
Search
Henry Cui
February 17, 2023
Technology
0
270
深層学習は奔流に身をまかせ / Get Drowned in the Flood for Deep Learning
Henry Cui
February 17, 2023
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
1
220
Direct Preference Optimization
zchenry
0
390
Diffusion Model with Perceptual Loss
zchenry
0
440
レンズの下のLLM / LLM under the Lens
zchenry
0
190
Go with the Prompt Flow
zchenry
0
170
Mojo Dojo
zchenry
0
230
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
610
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
270
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
150
Other Decks in Technology
See All in Technology
累計5000万DLサービスの裏側 – LINEマンガのKotlinで挑む大規模 Server-side ETLの最適化
ldf_tech
0
210
ピープルウエア x スタートアップ
operando
3
3.7k
ソースコードを読むときの思考プロセスの例 ~markdownのレンダリング方法を知りたかった2 markdownパッケージ~
sat
PRO
0
110
AIエージェントを導入する [ 社内ナレッジ活用編 ] / Implement AI agents
glidenote
1
300
隙間ツール開発のすすめ / PHP Conference Fukuoka 2025
meihei3
0
200
品質保証の取り組みを広げる仕組みづくり〜スキルの移譲と自律を支える実践知〜
tarappo
2
610
AWS IAM Identity Centerによる権限設定をグラフ構造で可視化+グラフRAGへの挑戦
ykimi
2
520
これからアウトプットする人たちへ - アウトプットを支える技術 / that support output
soudai
PRO
12
3.9k
MCP サーバーの基礎から実践レベルの知識まで
azukiazusa1
25
13k
Sansan BIが実践する AI on BI とセマンティックレイヤー / data_summit_findy
sansan_randd
0
110
AIエージェントは「使う」だけじゃなくて「作る」時代! 〜最新フレームワークで楽しく開発入門しよう〜
minorun365
9
1.4k
Gov-JAWS4回_某団体でのAmazon Bedrock活用検証で見えた“使う側”の課題精度よりもリテラシー
takuma818t
0
200
Featured
See All Featured
Designing for humans not robots
tammielis
254
26k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Navigating Team Friction
lara
190
15k
Why Our Code Smells
bkeepers
PRO
340
57k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Rails Girls Zürich Keynote
gr2m
95
14k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
What's in a price? How to price your products and services
michaelherold
246
12k
Transcript
深層学習は奔流に身をまかせ 機械学習の社会実装勉強会第20回 Henry 2023/2/18
モチベーション ▪ ペインポイント • 深層モデルの学習で望ましい効果を素早く得るのは難しい • 実データのラベルにノイズが多い • その問題点の一つに、過適合が挙げられる ▪
過適合を解消するための様々な正則化手法がある • weight decay や learning rate scheduler • Pytorchで簡単に使える ▪ 今日は最近の研究から、実用性が高い新しい正則化手法を 紹介する • 特に実装が楽 • まだあまり知られていない 2
紹介する論文 ▪ Do We Need Zero Training Loss After Achieving
Zero Training Error?, Ishida et al., ICML 2020 • Floodingという新しい正則化手法を導入 ▪ iFlood: A Stable and Effective Regularizer, Xie et al., ICLR 2022 • Floodingの計算式を少しだけ改良 3
Ishida et al., ICML 2020 ▪ モチベーション • 学習データでの損失を0まで学習を行ったほうが良いと言われる •
しかし、これは本当に必要なのか • 正則化手法は、学習データでの損失を過度に最小化しないための間 接的な手法と見なせる ▪ 直接学習損失の最小化を制限する手法:Flooding • 実装も簡単 • 学習損失は0じゃなくても、学習精度が100%の可能性もある 4
Ishida et al., ICML 2020 ▪ 提案法は以下の性質をすべて満たす初めての正則化手法 • 学習損失を直接制限する •
特定の問題ドメインに依存しない • 特定のタスクに依存しない • 特定のモデルに依存しない ▪ 提案法の仮設もシンプルで、「0の学習損失が有害」のみ ▪ 検証損失の二重降下に関する初めて研究 5
Ishida et al., ICML 2020 ▪ 人工データで有意な性能向上 6
Ishida et al., ICML 2020 ▪ 実データでも有意な性能向上 ▪ その他、Floodingによる勾配値の変化や解の平坦性なども調 査
7
Xie et al., ICLR 2022 ▪ Floodingにデータインスタンスの勾配が乖離する問題 • バッチで平均を取るので、同じバッチにある他のデータインスタンスの 損失に依存する
▪ 提案手法:絶対値をバッチで取るではなく、各データインスタン スレベルで取るので、indivisual Flood (iFlood)と呼ぶ ▪ 各手法のインスタンスの損失のヒストグラム 8
Xie et al., ICLR 2022 ▪ 確かに性能向上につながる ▪ その他も、勾配のノルムやノイズ耐性などを検証 9
まとめ ▪ 実用性高い正則化手法のFloodingとその改良版のiFlood ▪ 実装がシンプルで試しやすい 10