Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024年度春学期 統計学 第1回 イントロダクションー統計的なものの見方・考え方について (...
Search
Akira Asano
PRO
April 04, 2024
Education
1
240
2024年度春学期 統計学 第1回 イントロダクションー統計的なものの見方・考え方について (2024. 4. 11)
関西大学総合情報学部 応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2024s/AMA/
Akira Asano
PRO
April 04, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2024年度秋学期 画像情報処理 第3回 フーリエ級数とフーリエ変換 (2024. 10. 11)
akiraasano
PRO
0
4
2024年度秋学期 統計学 第2回 統計資料の収集と読み方(授業後配付用) (2024. 10. 2)
akiraasano
PRO
0
12
2024年度秋学期 統計学 第3回 クロス集計と感度・特異度,データの可視化 (2024. 10. 9)
akiraasano
PRO
0
4
2024年度秋学期 画像情報処理 講義の進め方と成績評価について (2024. 9. 27)
akiraasano
PRO
0
51
2024年度秋学期 画像情報処理 第1回 イントロダクション (2024. 9. 27)
akiraasano
PRO
0
58
2024年度秋学期 画像情報処理 第2回 結像と空間周波数,フーリエ級数 (2024. 10. 4)
akiraasano
PRO
0
30
2024年度秋学期 統計学 講義の進め方と成績評価について (2024. 9. 25)
akiraasano
PRO
0
71
2024年度秋学期 統計学 第1回 イントロダクションー統計的なものの見方・考え方について (2024. 9. 25)
akiraasano
PRO
0
53
2024年度秋学期 統計学 第2回 統計資料の収集と読み方(授業前配付用) (2024. 10. 2)
akiraasano
PRO
0
68
Other Decks in Education
See All in Education
240607_曲建仲_核融合成新顯學 創新技術將帶來全新方向
learnenergy2
0
180
英語学習から海外発表までの流れ
yasulab
18
4.1k
0528
cbtlibrary
0
110
A question of time
ange
0
900
The Blockchain Game
jscottmo
0
3.5k
世界のオープンソースロボットたち #1
shiba_8ro
0
120
RSJ2024学術ランチョンセミナー「若手・中堅による国際化リーダーシップに向けて」資料 (河原塚)
haraduka
0
200
week13@tcue2024
nonxxxizm
0
540
ACT FAST 20240830
japanstrokeassociation
0
120
Contentless Marketing
jonoalderson
0
1.3k
"数学" をプログラミングしてもらう際に気をつけていること / Key Considerations When Programming "Mathematics"
guvalif
0
490
Skynet to Schoolnet
draycottmc
0
150
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
124
18k
Designing with Data
zakiwarfel
98
5.1k
Unsuck your backbone
ammeep
667
57k
KATA
mclloyd
27
13k
From Idea to $5000 a Month in 5 Months
shpigford
380
46k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.8k
Building Adaptive Systems
keathley
37
2.1k
Embracing the Ebb and Flow
colly
83
4.4k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
36
1.7k
The Cost Of JavaScript in 2023
addyosmani
43
5.8k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
363
22k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.2k
Transcript
関西大学総合情報学部 浅野 晃 統計学 2024年度春学期 第1回 イントロダクション ー 統計的なものの見方・ 考え方について
「統計的見方」 「確率的見方」 「統計学と確率」
「統計的見方」
コロナ禍は 「終わった」のでしょうか?🦠🦠
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 公衆衛生学とは 5 ほかの医学が扱うのは,目の前のひとりの「人」🧑🧑 「人々」の行動を完全にコントロールはできない👫👫 感染したかどうか,検査で完全にはわからない🦠🦠 ワクチン💉💉は,感染を完全に防ぐわけではない 感染症を扱う医学は,「公衆衛生学」👨👨👨👩👩👩 公衆衛生学が扱うのは,社会を構成する「人々」👫👫
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染症と闘う統計学 6 統計学は,集団を全体として見て,その姿を把握する 社会を全体として見たときに, 感染の拡がりを抑えなければならない 「密閉・密集・密接の『三密』を避けよう」 「大人数の会食をやめよう」 -
統計学によって現状を把握して得られた指針 - 感染を社会全体として減らし,医療の逼迫を防ぐため (三密や大人数の会食を避けても,絶対に感染しないというわけではない)
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 感染を必ずさけられるのではなくても 7 感染を必ず避けられるのではないのなら,いったい何のため? 「密閉・密集・密接の『三密』を避けよう」 「大人数の会食をやめよう」 一度に多人数に感染させる「クラスター」を防ぐ 一人の感染者が感染させる人数が「平均して」一人未満なら, 社会全体の感染者数は減っていく
(実効再生産数が1未満) 一人の感染者が一人の人にしかうつさなければ,もとの感染者は回復するので, 社会全体の感染者の数は増えない
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 個人ではなく,社会を救う 8 「密閉・密集・密接の『三密』を避けよう」 「大人数の会食をやめよう」 「平均して」「社会全体の」 というのが,統計学の発想です 統計学で社会全体のようすを把握し,感染を社会全体で減らすのが↓ あなた個人👨👨👩👩を救うのではなく,社会全体🇯🇯🇯🇯🇺🇺🇺🇺を救う
「確率的見方」
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 確率が小さいこととは 10 ワクチン接種💉💉について 「コロナワクチン接種で重篤な副反応が出るのは10万人に1人の確率だと いっても,その副反応が出た人にとっては100%重篤な事態だ」🤔🤔 それはそのとおりで,「確率が小さいかどうか」と 「事態の重篤さが小さいかどうか」は関係ありません。 くじ引き🎯🎯で,「当たり確率」と「賞金の額」は別の問題なのと同じ
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 確率とは 11 確率とは 「くじの当たり確率 0.3」とは,次のような意味です(どちらでも同じ) • くじを十分多くの回数引くと,そのうち10回に3回の割合で当たる •
十分多くの人がそれぞれ1回くじを引くと, その人たちのうち10人中3人が当たりをひく この講義では,後半のはじめ(第9回)で説明しますが, いずれにしても, 「十分多くの回数」「十分多くの人」について言っていることを 「1回」「ひとり」に当てはめている
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 確率がわかっても 12 確率がわかっても, 次の「1回」のくじ引きの結果はわからない。 確率は,くじ引きのような「ランダム現象」を扱う ランダム現象とは,「結果に人知の及ばない現象」 確率を云々しても,人知が及ばないことに変わりはないけれど 「どんな結果になることがどのくらい多いか」を考える
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 期待値とは 13 期待値とは くじ引きで考えれば,(どちらでも同じ) • くじを十分多くの回数引いたときの,1回あたりに得られる賞金の平均 • 十分多くの人がそれぞれ1回くじを引いたとき,ひとりが得られる賞金の平均
さきほど「別の話」と言った「当たり確率」と「賞金の額」を結びつけて
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 プロのギャンブラーは 14 いくらプロのギャンブラーでも 次の1回の賭けに勝てるかどうかはわからない プロのギャンブラーは 日頃から多くの回数の賭けをする→ 賞金の期待値の大きい賭け方を見抜いて賭けることができれば, 1回1回の賭けでは勝ち負けがあっても,
多くの賭けの合計では勝つことができる
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 リスクとメリットは,考慮できるか 15 リスクとメリットを考慮して,といわれても ワクチン💉💉の話にもどると 日頃から多くの回数の賭けをするギャンブラーなら 賞金の期待値を問題にすることができるけれど 一生に1度しかしないことの確率や期待値を考えるのはむずかしい 人間の思考の限界?🤔🤔
「統計学と確率」
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 統計的推測とは 17 もうずいぶん昔ですが,1994年に ノルウェー🇳🇳🇳🇳 のリレハンメルで開かれた五輪の開会式で,アナウンサーが ノルウェー人全員の身長を測ったんですか?? 「ノルウェー人は背の高い人が多く,平均身長は男179cm,女170cmです」
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 標本調査と統計的推測 18 当然ながら,身長は人によって違う(分布している) ノルウェー人全員ではなく,一部の人だけ(標本)を調べて, 分布全体のようすがわかるのか? 「一部の人」を選ぶのに,くじびきで選ぶ(無作為抽出) わかります。かなりの程度わかります。 くじびきで選べば,たいていはいろんな人がまんべんなく選ばれる
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 無作為抽出すると 19 分布がこんなようすのとき データ全体 (実際には不明) 身長 高 身長
低 頻度 こんな標本が選ばれたら →大きく偏った推測 偶然こんな標本(•)が選ばれ てしまう確率は小さい
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 無作為抽出すると 20 分布がこんなようすのとき データ全体 (実際には不明) 身長 高 身長
低 頻度 たいていは, こんなふうに選ばれる こんなふうに 標本が選ばれれば →ほぼ間違っていない推測
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 「たいてい」と「ほぼ」 21 くじびきで選べば,たいていはいろんな人がまんべんなく選ばれる →選ばれた人の平均は,ほぼ全体の平均に近い 本当?😒😒 たまにはバレーボール🏐🏐の選手みたいな人ばかり選ばれることもあるのでは。 そのとおりです。「たまには」そういう失敗をします。 でも,失敗をする確率を計算できます。
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 区間推定 22 「区間推定」という統計学の方法では, 「ノルウェー人男性全体の平均身長は,179cm〜182cmの間と推測する。 この推測が当たっている確率は95%」 「ほぼ」 「たいてい」(失敗の確率5%) と答える
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 リスクを(再び)考える 23 「ノルウェー人男性全体の平均身長は,179cm〜182cmの間と推測する。 この推測が当たっている確率は95%」 「ほぼ」 「たいてい」(失敗の確率5%) 失敗の確率は「このような統計的推測を何度も行うとき,どのくらいの割 合の推測が失敗するか」を表す
→1回だけ推測するときに,それが成功するか失敗するかはわからない このような統計的推測を何度も行うのなら, そのうちどのくらいの割合 で失敗するかも想定できるので,それに対する備えをしておく,すなわち 「リスクを考える」ことができる
人間の統計学と 機械学習の統計学
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 機械のための新しい統計学 25 統計学は,人間が集団の姿を把握するためのものだった 最近急速に進歩してきた機械学習は,コンピュータが集団の姿を把握する統計学 人間にわかるかどうかは別問題 コンピュータ棋士は,なぜその手を指すのか,人間にわかるようには教えてくれない この講義では,人間のための,「伝統的な」統計学を扱います。 統計学(statistics)は,国家(state)と同語源
今日の最後に
27 2024年度春学期 統計学/ 関西大学総合情報学部 浅野 晃 思い込みにとらわれないための統計学 27 なぜベンチが 「線路に向かって座る」から 「列車の進む向きに座る」に変わったのだろう? 転落事故56件を調査すると 思い込みにとらわれず, きちんとデータを調べよう
うち33件(6割弱)は こうではなく線路に向かって歩いて落ちていた 読売新聞2015. 3. 31