Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SNLP2019
Search
Ayana Niwa
September 25, 2019
Research
1
520
SNLP2019
第11回最先端NLP勉強会 発表資料
Ayana Niwa
September 25, 2019
Tweet
Share
More Decks by Ayana Niwa
See All by Ayana Niwa
A Quick Overview to Unlock the Potential of LLMs through Prompt Engineering
ayaniwa
0
140
Learning To Retrieve Prompts for In-Context Learning
ayaniwa
0
1.1k
UnNatural Language Inference
ayaniwa
0
400
Trends in Natural Language Processing at NeurIPS 2019.
ayaniwa
8
4.4k
Other Decks in Research
See All in Research
NLP2025SharedTask翻訳部門
moriokataku
0
290
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
170
BtoB プロダクトにおけるインサイトマネジメントの必要性 現場ドリブンなカミナシがインサイトマネジメントに取り組むワケ / Why field-driven Kaminashi is working on insight management
kaminashi
1
440
ことばの意味を計算するしくみ
verypluming
11
2.5k
20250502_ABEJA_論文読み会_スライド
flatton
0
150
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
590
Cross-Media Information Spaces and Architectures
signer
PRO
0
220
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
2.7k
SSII2025 [TS1] 光学・物理原理に基づく深層画像生成
ssii
PRO
3
2.9k
Weekly AI Agents News! 2月号 アーカイブ
masatoto
1
190
Mathematics in the Age of AI and the 4 Generation University
hachama
0
150
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
380
Featured
See All Featured
Thoughts on Productivity
jonyablonski
69
4.7k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
BBQ
matthewcrist
88
9.7k
Designing for Performance
lara
608
69k
Adopting Sorbet at Scale
ufuk
76
9.4k
The Power of CSS Pseudo Elements
geoffreycrofte
76
5.8k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Writing Fast Ruby
sferik
628
61k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
123
52k
Transcript
Probing for Semantic Classes: Diagnosing the Meaning Content of Word
Embeddings Yadollah Yaghoobzadeh, Katharina Kann, Timothy J. Hazen, Eneko Agirre, Hinrich Schutze ACL2019 11 NLP 2019/09/28 <
[email protected]
>
Outline 2 H9P=O8 O8 "!PC
$@K !.S%,'3 F5T&*'$:I P=O8$.S%,'PV ! R<72$PC H/+%)- >#"!.S O8! H9E69NR<72;BJ?Q1L >#".S(rare senses)P=O8APM0 " 4D('% UG
Background 3 # " !Word2VecGrove #"NLPIR* - ELMoBERT
$'+ ) %" full-space , % & L "$( " # &!
Background 4 # "@!Semantic class>*( S-class , "@=6:-&C?4=6
B $8 SEMCAT, HyperLex… =1;+=62%A → 0# .9/ - WIKI-PSE(WIKIpedia-based resource for Probing Semantics in word Embeddings) - "@=1;+sense embedding'7) “Lamb” Food3< Living-thing5< "@ !
Background 5 # Apple Apple Apple
+ Word embeddingsense embedding Arora et al. (2018) Arora et al. (2018) Word embedding sparse coding WIKI-PSEsense embedding Word embedding Sense embedding Sense embedding
WIKI-PSE Resource 6 Wikipedia .!2,$# .! ()
S-class 113 FIGER types%+134"10 person/authorperson/politician… à person -S-class *'.!/.! & - S-class0
WIKI-PSE Resource 7 "$% %2& +:! 343,000-6.-S-class#5'5000;-!% 75,.6,.83
+*1! /4 44,250- -S-class - S-class )0organization (9food @apple@ – food @apple@ – organization
8 Word embedding (word) @apple@ WIKI-PSE
word embedding Sense embedding @apple@ @apple@ - food @apple@ - organization @ word/S-class Uniform sum (unifΣ) !" Weighted sum (wghtΣ) !" # = % " !" #&" # Aggregated word embedding #&" Sense (word/S-class) embeddings word, unifΣ, wghtΣ
Experiments 9 Problem settings SkipGram Structured SkipGram
WIKI-PSE (LR) # (MLP k*)KNN) 1. word % word embedding 2. unifΣ sense embedding " 3. wghtΣ sense embedding ! $'& (" Word embedding
Experiments 10 Probing Task 1S-class Prediction S-class
@apple@ +food ∩ +organization ∩ -event S-class
Experiments 11 MLP > LRKNN 8&!S-class ."7;5
KNN )#, *:3, <(3-/ unifΣ > word > wghtΣ 'rare sense 0$ 97< à Rare sense42%+6 unifΣ Probing Task 1S-class Prediction F11 4
Experiments 12 Probing Task 1S-class Prediction
unifΣ $ #rare sense (13,000) F1! "
Experiments 13 Probing Task 1S-class Prediction * #4(! Recall
) S-class& sense embedding+%3 Rare S-class/"12 %"0, .$- Recall Dominance S-class' Recall
Experiments 14 Probing Task 1S-class Prediction /&)5. !"$' ,(20-
3+1(#41( Personlocation,(20* S-class !"6 20% Recall Recall #4 ,(20 Typicality Recall
Experiments 15 " Probing Task 2Ambiguity
Prediction ! L2 SSKIP$" LR / KNN / MLP ! ! unifΣ > word > wghtΣ KNN à % FREQUENCY(Baseline) # &LR
NLP Application Experiments 16 wghtΣ > word >(=) unifΣ <--
Probing task #!! -the U.S. Attorney’s Office announced Friday → location Common S-classtime Rare S-class location Friday mountain unifΣ ( !+ entity mention MC ), CRMR $)& SUBJ %*' MRPC " S-class
Summary & Conclusion 17 * $2"(3 WIKI-PSE'. 1)/& 0+$2/&
1, 1)/&% # 0+$2- a a e Rare sense e harder NLP Rare sense !# e