Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SNLP2019
Search
Ayana Niwa
September 25, 2019
Research
1
550
SNLP2019
第11回最先端NLP勉強会 発表資料
Ayana Niwa
September 25, 2019
Tweet
Share
More Decks by Ayana Niwa
See All by Ayana Niwa
A Quick Overview to Unlock the Potential of LLMs through Prompt Engineering
ayaniwa
0
180
Learning To Retrieve Prompts for In-Context Learning
ayaniwa
0
1.1k
UnNatural Language Inference
ayaniwa
0
430
Trends in Natural Language Processing at NeurIPS 2019.
ayaniwa
8
4.4k
Other Decks in Research
See All in Research
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
430
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
230
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
280
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.9k
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
790
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
340
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
490
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
290
Nullspace MPC
mizuhoaoki
1
440
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
490
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
370
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
320
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Code Reviewing Like a Champion
maltzj
527
40k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
A Modern Web Designer's Workflow
chriscoyier
697
190k
GraphQLとの向き合い方2022年版
quramy
49
14k
Designing for humans not robots
tammielis
254
26k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Transcript
Probing for Semantic Classes: Diagnosing the Meaning Content of Word
Embeddings Yadollah Yaghoobzadeh, Katharina Kann, Timothy J. Hazen, Eneko Agirre, Hinrich Schutze ACL2019 11 NLP 2019/09/28 <
[email protected]
>
Outline 2 H9P=O8 O8 "!PC
$@K !.S%,'3 F5T&*'$:I P=O8$.S%,'PV ! R<72$PC H/+%)- >#"!.S O8! H9E69NR<72;BJ?Q1L >#".S(rare senses)P=O8APM0 " 4D('% UG
Background 3 # " !Word2VecGrove #"NLPIR* - ELMoBERT
$'+ ) %" full-space , % & L "$( " # &!
Background 4 # "@!Semantic class>*( S-class , "@=6:-&C?4=6
B $8 SEMCAT, HyperLex… =1;+=62%A → 0# .9/ - WIKI-PSE(WIKIpedia-based resource for Probing Semantics in word Embeddings) - "@=1;+sense embedding'7) “Lamb” Food3< Living-thing5< "@ !
Background 5 # Apple Apple Apple
+ Word embeddingsense embedding Arora et al. (2018) Arora et al. (2018) Word embedding sparse coding WIKI-PSEsense embedding Word embedding Sense embedding Sense embedding
WIKI-PSE Resource 6 Wikipedia .!2,$# .! ()
S-class 113 FIGER types%+134"10 person/authorperson/politician… à person -S-class *'.!/.! & - S-class0
WIKI-PSE Resource 7 "$% %2& +:! 343,000-6.-S-class#5'5000;-!% 75,.6,.83
+*1! /4 44,250- -S-class - S-class )0organization (9food @apple@ – food @apple@ – organization
8 Word embedding (word) @apple@ WIKI-PSE
word embedding Sense embedding @apple@ @apple@ - food @apple@ - organization @ word/S-class Uniform sum (unifΣ) !" Weighted sum (wghtΣ) !" # = % " !" #&" # Aggregated word embedding #&" Sense (word/S-class) embeddings word, unifΣ, wghtΣ
Experiments 9 Problem settings SkipGram Structured SkipGram
WIKI-PSE (LR) # (MLP k*)KNN) 1. word % word embedding 2. unifΣ sense embedding " 3. wghtΣ sense embedding ! $'& (" Word embedding
Experiments 10 Probing Task 1S-class Prediction S-class
@apple@ +food ∩ +organization ∩ -event S-class
Experiments 11 MLP > LRKNN 8&!S-class ."7;5
KNN )#, *:3, <(3-/ unifΣ > word > wghtΣ 'rare sense 0$ 97< à Rare sense42%+6 unifΣ Probing Task 1S-class Prediction F11 4
Experiments 12 Probing Task 1S-class Prediction
unifΣ $ #rare sense (13,000) F1! "
Experiments 13 Probing Task 1S-class Prediction * #4(! Recall
) S-class& sense embedding+%3 Rare S-class/"12 %"0, .$- Recall Dominance S-class' Recall
Experiments 14 Probing Task 1S-class Prediction /&)5. !"$' ,(20-
3+1(#41( Personlocation,(20* S-class !"6 20% Recall Recall #4 ,(20 Typicality Recall
Experiments 15 " Probing Task 2Ambiguity
Prediction ! L2 SSKIP$" LR / KNN / MLP ! ! unifΣ > word > wghtΣ KNN à % FREQUENCY(Baseline) # &LR
NLP Application Experiments 16 wghtΣ > word >(=) unifΣ <--
Probing task #!! -the U.S. Attorney’s Office announced Friday → location Common S-classtime Rare S-class location Friday mountain unifΣ ( !+ entity mention MC ), CRMR $)& SUBJ %*' MRPC " S-class
Summary & Conclusion 17 * $2"(3 WIKI-PSE'. 1)/& 0+$2/&
1, 1)/&% # 0+$2- a a e Rare sense e harder NLP Rare sense !# e