Upgrade to Pro — share decks privately, control downloads, hide ads and more …

SNLP2019

Avatar for Ayana Niwa Ayana Niwa
September 25, 2019

 SNLP2019

第11回最先端NLP勉強会 発表資料

Avatar for Ayana Niwa

Ayana Niwa

September 25, 2019
Tweet

More Decks by Ayana Niwa

Other Decks in Research

Transcript

  1. Probing for Semantic Classes: Diagnosing the Meaning Content of Word

    Embeddings Yadollah Yaghoobzadeh, Katharina Kann, Timothy J. Hazen, Eneko Agirre, Hinrich Schutze ACL2019 11 NLP  2019/09/28    <[email protected]>
  2. Outline 2 H9P=O8 O8 "!PC     

       $@K !.S%,'3 F5T&*'$:I P=O8$.S%,'PV ! R<72$PC H/+%)- >#"!.S O8! H9E69NR<72;BJ?Q1L  >#".S(rare senses)P=O8APM0 " 4D('% UG
  3. Background 3 # " !Word2VecGrove  #"NLPIR* - ELMoBERT 

    $'+ ) %" full-space , % &   L  "$( "   # &!
  4. Background 4 #  "@!Semantic class>*( S-class , "@=6:-&C?4=6 

    B $8 SEMCAT, HyperLex… =1;+=62%A → 0# .9/ - WIKI-PSE(WIKIpedia-based resource for Probing Semantics in word Embeddings) - "@=1;+sense embedding'7) “Lamb” Food3< Living-thing5< "@ !
  5. Background 5 #   Apple Apple  Apple 

    + Word embeddingsense embedding  Arora et al. (2018) Arora et al. (2018) Word embedding sparse coding WIKI-PSEsense embedding  Word embedding Sense embedding Sense embedding
  6. WIKI-PSE Resource 6 Wikipedia .!2,$#  .! ()  

    S-class 113 FIGER types%+134"10 person/authorperson/politician… à person -S-class      *'.!/.! & - S-class0
  7. WIKI-PSE Resource 7  "$%  %2& +:! 343,000-6.-S-class#5'5000;-!% 75,.6,.83

    +*1! /4   44,250-   -S-class  - S-class )0organization (9food @apple@ – food @apple@ – organization   
  8.   8 Word embedding (word) @apple@ WIKI-PSE  

    word embedding Sense embedding @apple@ @apple@ - food @apple@ - organization  @  word/S-class Uniform sum (unifΣ) !" Weighted sum (wghtΣ) !"  # = % " !" #&" # Aggregated word embedding #&"  Sense (word/S-class) embeddings word, unifΣ, wghtΣ
  9. Experiments 9 Problem settings   SkipGram Structured SkipGram 

    WIKI-PSE    (LR) # (MLP k*)KNN) 1. word % word embedding 2. unifΣ sense embedding  " 3. wghtΣ sense embedding ! $'& (" Word embedding
  10. Experiments 10 Probing Task 1S-class Prediction  S-class  

    @apple@ +food ∩ +organization ∩ -event S-class  
  11. Experiments 11 MLP > LRKNN 8&!S-class ."7;5   

     KNN )#, *:3, <(3-/ unifΣ > word > wghtΣ 'rare sense 0$  97< à Rare sense42%+6 unifΣ Probing Task 1S-class Prediction F11 4
  12. Experiments 12 Probing Task 1S-class Prediction    

     unifΣ  $    #rare sense    (13,000) F1! "
  13. Experiments 13 Probing Task 1S-class Prediction * #4(!  Recall

    ) S-class&  sense embedding+%3 Rare S-class/"12 %"0, .$- Recall     Dominance S-class' Recall 
  14. Experiments 14 Probing Task 1S-class Prediction /&)5. !"$'  ,(20-

       3+1(#41(       Personlocation,(20* S-class !"6 20% Recall Recall #4 ,(20 Typicality Recall 
  15. Experiments 15  "    Probing Task 2Ambiguity

    Prediction ! L2 SSKIP$" LR / KNN / MLP ! ! unifΣ > word > wghtΣ KNN    à    % FREQUENCY(Baseline)  # &LR
  16. NLP Application Experiments 16 wghtΣ > word >(=) unifΣ <--

    Probing task #!! -the U.S. Attorney’s Office announced Friday → location Common S-classtime Rare S-class location Friday mountain unifΣ  ( !+  entity mention  MC ), CRMR $)& SUBJ  %*' MRPC "   S-class 
  17. Summary & Conclusion 17 * $2"(3 WIKI-PSE'.  1)/& 0+$2/&

    1, 1)/&%  # 0+$2- a a e Rare sense e harder NLP Rare sense !# e