Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SNLP2019
Search
Ayana Niwa
September 25, 2019
Research
1
550
SNLP2019
第11回最先端NLP勉強会 発表資料
Ayana Niwa
September 25, 2019
Tweet
Share
More Decks by Ayana Niwa
See All by Ayana Niwa
A Quick Overview to Unlock the Potential of LLMs through Prompt Engineering
ayaniwa
0
160
Learning To Retrieve Prompts for In-Context Learning
ayaniwa
0
1.1k
UnNatural Language Inference
ayaniwa
0
420
Trends in Natural Language Processing at NeurIPS 2019.
ayaniwa
8
4.4k
Other Decks in Research
See All in Research
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
4.4k
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
390
ip71_contraflow_reconfiguration
stkmsd
0
110
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
310
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
660
Generative Models 2025
takahashihiroshi
25
14k
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
110
20250624_熊本経済同友会6月例会講演
trafficbrain
1
730
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
380
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
100
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
150
CoRL2025速報
rpc
1
2.7k
Featured
See All Featured
BBQ
matthewcrist
89
9.9k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6k
A Tale of Four Properties
chriscoyier
161
23k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Why Our Code Smells
bkeepers
PRO
340
57k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Done Done
chrislema
186
16k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
For a Future-Friendly Web
brad_frost
180
10k
Transcript
Probing for Semantic Classes: Diagnosing the Meaning Content of Word
Embeddings Yadollah Yaghoobzadeh, Katharina Kann, Timothy J. Hazen, Eneko Agirre, Hinrich Schutze ACL2019 11 NLP 2019/09/28 <
[email protected]
>
Outline 2 H9P=O8 O8 "!PC
$@K !.S%,'3 F5T&*'$:I P=O8$.S%,'PV ! R<72$PC H/+%)- >#"!.S O8! H9E69NR<72;BJ?Q1L >#".S(rare senses)P=O8APM0 " 4D('% UG
Background 3 # " !Word2VecGrove #"NLPIR* - ELMoBERT
$'+ ) %" full-space , % & L "$( " # &!
Background 4 # "@!Semantic class>*( S-class , "@=6:-&C?4=6
B $8 SEMCAT, HyperLex… =1;+=62%A → 0# .9/ - WIKI-PSE(WIKIpedia-based resource for Probing Semantics in word Embeddings) - "@=1;+sense embedding'7) “Lamb” Food3< Living-thing5< "@ !
Background 5 # Apple Apple Apple
+ Word embeddingsense embedding Arora et al. (2018) Arora et al. (2018) Word embedding sparse coding WIKI-PSEsense embedding Word embedding Sense embedding Sense embedding
WIKI-PSE Resource 6 Wikipedia .!2,$# .! ()
S-class 113 FIGER types%+134"10 person/authorperson/politician… à person -S-class *'.!/.! & - S-class0
WIKI-PSE Resource 7 "$% %2& +:! 343,000-6.-S-class#5'5000;-!% 75,.6,.83
+*1! /4 44,250- -S-class - S-class )0organization (9food @apple@ – food @apple@ – organization
8 Word embedding (word) @apple@ WIKI-PSE
word embedding Sense embedding @apple@ @apple@ - food @apple@ - organization @ word/S-class Uniform sum (unifΣ) !" Weighted sum (wghtΣ) !" # = % " !" #&" # Aggregated word embedding #&" Sense (word/S-class) embeddings word, unifΣ, wghtΣ
Experiments 9 Problem settings SkipGram Structured SkipGram
WIKI-PSE (LR) # (MLP k*)KNN) 1. word % word embedding 2. unifΣ sense embedding " 3. wghtΣ sense embedding ! $'& (" Word embedding
Experiments 10 Probing Task 1S-class Prediction S-class
@apple@ +food ∩ +organization ∩ -event S-class
Experiments 11 MLP > LRKNN 8&!S-class ."7;5
KNN )#, *:3, <(3-/ unifΣ > word > wghtΣ 'rare sense 0$ 97< à Rare sense42%+6 unifΣ Probing Task 1S-class Prediction F11 4
Experiments 12 Probing Task 1S-class Prediction
unifΣ $ #rare sense (13,000) F1! "
Experiments 13 Probing Task 1S-class Prediction * #4(! Recall
) S-class& sense embedding+%3 Rare S-class/"12 %"0, .$- Recall Dominance S-class' Recall
Experiments 14 Probing Task 1S-class Prediction /&)5. !"$' ,(20-
3+1(#41( Personlocation,(20* S-class !"6 20% Recall Recall #4 ,(20 Typicality Recall
Experiments 15 " Probing Task 2Ambiguity
Prediction ! L2 SSKIP$" LR / KNN / MLP ! ! unifΣ > word > wghtΣ KNN à % FREQUENCY(Baseline) # &LR
NLP Application Experiments 16 wghtΣ > word >(=) unifΣ <--
Probing task #!! -the U.S. Attorney’s Office announced Friday → location Common S-classtime Rare S-class location Friday mountain unifΣ ( !+ entity mention MC ), CRMR $)& SUBJ %*' MRPC " S-class
Summary & Conclusion 17 * $2"(3 WIKI-PSE'. 1)/& 0+$2/&
1, 1)/&% # 0+$2- a a e Rare sense e harder NLP Rare sense !# e