Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SNLP2019
Search
Ayana Niwa
September 25, 2019
Research
1
490
SNLP2019
第11回最先端NLP勉強会 発表資料
Ayana Niwa
September 25, 2019
Tweet
Share
More Decks by Ayana Niwa
See All by Ayana Niwa
A Quick Overview to Unlock the Potential of LLMs through Prompt Engineering
ayaniwa
0
130
Learning To Retrieve Prompts for In-Context Learning
ayaniwa
0
1k
UnNatural Language Inference
ayaniwa
0
390
Trends in Natural Language Processing at NeurIPS 2019.
ayaniwa
8
4.3k
Other Decks in Research
See All in Research
Elix, CBI2024, スポンサードセッション, Molecular Glue研究の展望:近年の進展とAI活用の可能性
elix
0
130
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
290
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
24
5.9k
Bluesky Game Dev
trezy
0
140
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
1.1k
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
330
第79回 産総研人工知能セミナー 発表資料
agiats
3
200
医療支援AI開発における臨床と情報学の連携を円滑に進めるために
moda0
0
150
Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping
satai
2
130
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
460
精度を無視しない推薦多様化の評価指標
kuri8ive
1
360
Evaluating Tool-Augmented Agents in Remote Sensing Platforms
satai
2
150
Featured
See All Featured
Optimizing for Happiness
mojombo
376
70k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Mobile First: as difficult as doing things right
swwweet
223
9.3k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Documentation Writing (for coders)
carmenintech
67
4.6k
Statistics for Hackers
jakevdp
797
220k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
Transcript
Probing for Semantic Classes: Diagnosing the Meaning Content of Word
Embeddings Yadollah Yaghoobzadeh, Katharina Kann, Timothy J. Hazen, Eneko Agirre, Hinrich Schutze ACL2019 11 NLP 2019/09/28 <
[email protected]
>
Outline 2 H9P=O8 O8 "!PC
$@K !.S%,'3 F5T&*'$:I P=O8$.S%,'PV ! R<72$PC H/+%)- >#"!.S O8! H9E69NR<72;BJ?Q1L >#".S(rare senses)P=O8APM0 " 4D('% UG
Background 3 # " !Word2VecGrove #"NLPIR* - ELMoBERT
$'+ ) %" full-space , % & L "$( " # &!
Background 4 # "@!Semantic class>*( S-class , "@=6:-&C?4=6
B $8 SEMCAT, HyperLex… =1;+=62%A → 0# .9/ - WIKI-PSE(WIKIpedia-based resource for Probing Semantics in word Embeddings) - "@=1;+sense embedding'7) “Lamb” Food3< Living-thing5< "@ !
Background 5 # Apple Apple Apple
+ Word embeddingsense embedding Arora et al. (2018) Arora et al. (2018) Word embedding sparse coding WIKI-PSEsense embedding Word embedding Sense embedding Sense embedding
WIKI-PSE Resource 6 Wikipedia .!2,$# .! ()
S-class 113 FIGER types%+134"10 person/authorperson/politician… à person -S-class *'.!/.! & - S-class0
WIKI-PSE Resource 7 "$% %2& +:! 343,000-6.-S-class#5'5000;-!% 75,.6,.83
+*1! /4 44,250- -S-class - S-class )0organization (9food @apple@ – food @apple@ – organization
8 Word embedding (word) @apple@ WIKI-PSE
word embedding Sense embedding @apple@ @apple@ - food @apple@ - organization @ word/S-class Uniform sum (unifΣ) !" Weighted sum (wghtΣ) !" # = % " !" #&" # Aggregated word embedding #&" Sense (word/S-class) embeddings word, unifΣ, wghtΣ
Experiments 9 Problem settings SkipGram Structured SkipGram
WIKI-PSE (LR) # (MLP k*)KNN) 1. word % word embedding 2. unifΣ sense embedding " 3. wghtΣ sense embedding ! $'& (" Word embedding
Experiments 10 Probing Task 1S-class Prediction S-class
@apple@ +food ∩ +organization ∩ -event S-class
Experiments 11 MLP > LRKNN 8&!S-class ."7;5
KNN )#, *:3, <(3-/ unifΣ > word > wghtΣ 'rare sense 0$ 97< à Rare sense42%+6 unifΣ Probing Task 1S-class Prediction F11 4
Experiments 12 Probing Task 1S-class Prediction
unifΣ $ #rare sense (13,000) F1! "
Experiments 13 Probing Task 1S-class Prediction * #4(! Recall
) S-class& sense embedding+%3 Rare S-class/"12 %"0, .$- Recall Dominance S-class' Recall
Experiments 14 Probing Task 1S-class Prediction /&)5. !"$' ,(20-
3+1(#41( Personlocation,(20* S-class !"6 20% Recall Recall #4 ,(20 Typicality Recall
Experiments 15 " Probing Task 2Ambiguity
Prediction ! L2 SSKIP$" LR / KNN / MLP ! ! unifΣ > word > wghtΣ KNN à % FREQUENCY(Baseline) # &LR
NLP Application Experiments 16 wghtΣ > word >(=) unifΣ <--
Probing task #!! -the U.S. Attorney’s Office announced Friday → location Common S-classtime Rare S-class location Friday mountain unifΣ ( !+ entity mention MC ), CRMR $)& SUBJ %*' MRPC " S-class
Summary & Conclusion 17 * $2"(3 WIKI-PSE'. 1)/& 0+$2/&
1, 1)/&% # 0+$2- a a e Rare sense e harder NLP Rare sense !# e