Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NeurIPS 2021 論文読み会: How Modular should Neural M...
Search
Atsushi Takayama
January 25, 2022
Technology
0
170
NeurIPS 2021 論文読み会: How Modular should Neural Module Networks Be for Systematic Generalization?
Atsushi Takayama
January 25, 2022
Tweet
Share
More Decks by Atsushi Takayama
See All by Atsushi Takayama
最高の開発者体験の追求が開発生産性を改善し続ける文化を生み出した話
edvakf
3
1.3k
8年物のJavaのシステムをKotlinに変えていく選択に至るまで
edvakf
2
1.1k
ピクシブ社内のImageFlux利用事例紹介
edvakf
1
2.9k
学びの文化を育む社内読書会のススメ
edvakf
0
270
フルCDNアーキテクチャでサービス設計した話
edvakf
5
3.9k
Goでバイナリを読む+α
edvakf
1
950
お前はこれまでに作ったAPIの数を覚えているのか?
edvakf
0
2.6k
「ふつうのRailsアプリケーション」についての考え方
edvakf
2
860
ggplot.galleryというお遊びウェブアプリケーションを作った話
edvakf
0
410
Other Decks in Technology
See All in Technology
Claude Codeから我々が学ぶべきこと
s4yuba
6
1.8k
o11yツールを乗り換えた話
tak0x00
1
120
Kiroから考える AIコーディングツールの潮流
s4yuba
4
660
Amazon Q Developerを活用したアーキテクチャのリファクタリング
k1nakayama
2
180
生成AI時代におけるAI・機械学習技術を用いたプロダクト開発の深化と進化 #BetAIDay
layerx
PRO
1
1k
【OptimizationNight】数理最適化のラストワンマイルとしてのUIUX
brainpadpr
0
200
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
420
Claude Codeが働くAI中心の業務システム構築の挑戦―AIエージェント中心の働き方を目指して
os1ma
9
1.5k
LIFF CLIとngrokを使ったLIFF/LINEミニアプリのお手軽実機確認
diggymo
0
230
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
11
2.7k
相互運用可能な学修歴クレデンシャルに向けた標準技術と国際動向
fujie
0
200
SRE新規立ち上げ! Hubbleインフラのこれまでと展望
katsuya0515
0
160
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Done Done
chrislema
185
16k
Automating Front-end Workflow
addyosmani
1370
200k
KATA
mclloyd
31
14k
Gamification - CAS2011
davidbonilla
81
5.4k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
790
Agile that works and the tools we love
rasmusluckow
329
21k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Designing Experiences People Love
moore
142
24k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Transcript
How Modular should Neural Module Networks Be for Systematic Generalization?
高山温 @ NewsPicks (Uzabase group) NeurIPS 2021 論文読み会 2022/01/25
自己紹介 • Atsushi Takayama / 高山温 • 2020年からNewsPicksでCTOをしていまし たが、今年からFellowしてます ◦
データ基盤、データ分析、レコメンドエンジン、検 索エンジンなどのチームを率いています • 大学中退 → 大学院中退 → 大学院生(イマココ) ◦ 元々物理をやっていましたが、今はコンピュータサ イエンスを勉強中 • 宣伝: ユーザベースはエンジニアの多様な キャリアと多様な成長を応援する会社です
Table of Contents • VQAとは • この研究の位置付け • 研究内容 •
結果 • 所感
VQA (Visual Question Answering) • since 2015 ◦ 画像を与えられて質問に答える問題 •
2021年に人間並みの精度になった ◦ Microsoft, Alibabaなど ▪ pre-trained attention-based models 人間 95.49 80.84 67.89 80.78
この研究の位置付け 1 • SOTAとは別方向で、「少ない例で学習して、 どれだけ類似の質問に答えられるか」という 問題設定がある • 右のような例で、人間なら少し学習しただけ で類似の質問にも答えられる ◦
Systematic Generalizationという
この研究の位置付け 2 NMN: Neural Modular Networks 質問文をパースしてネットワークを構築 →少し学習しただけでそこそこ強い FiLM: End-to-Endで微分可能なネットワーク
→大量に学習しないと強くない
この研究の位置付け 3 • NMNを詳しく研究したら何かおもしろいことがわかるのでは? ◦ 例えば、End-to-Endのモデルで「質問文の構造」を学習するような機構を取り入れられな いか、とか ◦ VQAだけでなく画像認識でも Systematic
Generalizationを上げるにはどうすればいい か、とか
• 下のような画像と質問1〜3があるとする ◦ 1と2は色に関する質問、 3は文字に関する質問 • 論文のタイトル “How Modular Should
Neural Networks Be” は次 のようなイメージ ◦ 左: 全部の質問に対応できるネットワークを学習する (最もModularityが低い) ◦ 中央: 色とカテゴリーというグループごとにネットワークを学習する ◦ 右: 各質問ごとに別々のネットワークを学習する (最もModularityが高い) 研究内容 1
研究内容 2 • 少し複雑な質問でも、同様にsub-taskに分解して、Modularityが高い ネットワークから低いネットワークまでのパターンを作る
結果 1 • グラフ(a)〜(d) ◦ 質問の種類 • 横軸 ◦ 全体の何割のデータで学
習したか • 縦軸 ◦ 学習に登場しなかった類 似の質問の正答率 • 4色のバー ◦ 右に行くにつれて Modularityが高い
結果 2 • 他にも色んなデータセットで検証 • やっぱりModularityは効く (結果は割愛)
所感 • ここまで書いていて、富士通さんのテックブ ログに解説が載ってるのに気づきました • 実はまったく知らない分野でしたが、締め切 り駆動で10本ぐらい読んでみると多くのこと が学べました。誘っていただき感謝 https://blog.fltech.dev/entry/2021/12/09/neurips2021-ja