Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
直積は便利/direct_product_is_useful
Search
florets1
October 14, 2024
Business
3
270
直積は便利/direct_product_is_useful
florets1
October 14, 2024
Tweet
Share
More Decks by florets1
See All by florets1
butterfly_effect/butterfly_effect_in-house
florets1
1
95
データハンドリング/data_handling
florets1
2
140
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
190
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
請求と支払を照合する技術/using_full_join_in_r
florets1
2
210
応用セッション_同じデータでもP値が変わる話/key_considerations_in_NHST_2
florets1
1
1.1k
お名前から性別を推測する/Guessing_gender_from_name
florets1
1
450
バタフライ効果/butterfly_effect
florets1
0
230
尤度/likelihood
florets1
3
880
Other Decks in Business
See All in Business
会社案内資料
mkengineering
1
160
ログラス会社紹介資料 新卒採用 ビジネス職[経営幹部候補]/ Loglass Company Deck
loglass2019
0
680
パレットクラウド株式会社 採用ピッチ資料
palettecloud
0
5.5k
Cobe Associe: Who we are? /コンサル・市場調査・人材紹介のCobe Associe
nozomi
6
18k
UPSIDER Company Deck
upsider_official
0
75k
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
770
東京都ツキノワグマ目撃等情報マップ
tokyo_metropolitan_gov_digital_hr
0
270
パレットクラウド株式会社 採用ピッチ資料 エンジニア編
palettecloud
0
4.3k
la belle vie Inc. Company Introduction for Engineers
recruiting
0
820
株式会社Beer and Tech/HitoHana(ひとはな) 採用資料 2024.11
beerandtech_recruiter
1
490
もしドラッカーがアジャイルコーチになったら / If Drucker Were an Agile Coach
fkino
2
410
STRACT, Inc. Company Deck
stract
0
1.2k
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
410
Become a Pro
speakerdeck
PRO
25
5k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
Embracing the Ebb and Flow
colly
84
4.5k
Designing for humans not robots
tammielis
250
25k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.2k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
How to train your dragon (web standard)
notwaldorf
88
5.7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
89
Transcript
1 2024.10.19 Tokyo.R #115 直積は便利
2 タスク管理データ タスクA: 担当は秋田さんで、10/1から10/4 までの予定です。工数は32時間なので、1日 8時間で完了します。
3 タスクF: 担当は福井さんで、10/1から10/8 までの予定です。工数は64時間ですが、期 間中に土日が含まれるため、実際の稼働日 は6日間しかありません。そのため、1日の 工数は10時間を超えてしまいます。福井さ んは残業が発生しそうです。
4 次に、10月11日の秋田さんに注目します。 この日はタスクBとタスクCを担当する予定 ですが、それぞれ1日あたりの工数が8時間 で、合計16時間となってしまいます。この ため、計画の見直しが必要です。
5 また、福井さんの計画を詳しく見ると、工数の 偏りが見られます。例えば、 • 10月17日以降は1日4時間程度の余裕あり • 10月9日と10月10日は工数がゼロ 不均一な工数配分の見直しが必要です。
6 タスクの目視確認は困難 タスクの数が少ない場合は、前述のような問題も目視で確認できます。 しかし、プロジェクトが大規模になり、タスクが100件、さらには1000件 を超えるようになると、全体を把握することは非常に困難です。 目視での確認だけでは、見落としやミスが増えてしまうでしょう。
7 Excelでのタスク管理の限界 「Excelで自動的に確認できればいいのでは?」と考える人もいるかもし れません。しかし、Excelでタスク管理を行うのは意外と難しいのです。 複雑な関数を駆使すれば、特定の問題は解決できるかもしれませんが、別 の問題が発生した場合、さらに複雑な対応が必要になります。 例えば、月単位で集計していたデータを週単位で集計し直すといった場合、 シート全体を大幅に変更する必要があります。こうした柔軟性の欠如は、 Excelでのタスク管理の大きな制約です。
8 データ粒度の問題 タスク管理データが扱いにくい理 由の一つは、このデータの「粒 度」が粗いからです。 現在のタスク管理データでは、各 タスクは開始日と終了日だけで1行 にまとめられています。 もっと粒度を細かくして、日付単 位にしてやれば、扱いやすくなり
そうです。
9 直積 t1 t2 t3 crossing
10 タスクとカレンダーの直積 タスク カレンダー 変換 crossing
11 変換後のデータでタスク確認 タスクA: 担当は秋田さんで、10/1から 10/4までの予定です。工数は32時間なの で、 1日8時間で完了します。
タスクF: 担当は福井さんで、10/1から10/8 までの予定です。工数は64時間ですが、期 間中に土日が含まれるため、実際の稼働日 は6日間しかありません。そのため、1日の 工数は10時間を超えてしまいます。福井さ んは残業が発生しそうです。 12 変換後のデータでタスク確認
13 変換後のデータでタスク確認 次に、10月11日の秋田さんに注目します。 この日はタスクBとタスクCを担当する予定 ですが、それぞれ1日あたりの工数が8時間 で、合計16時間となってしまいます。この ため、計画の見直しが必要です。
福井さんの計画を詳しく見ると、工数の偏 りが見られます。 10月17日以降は1日4時間程度の余裕があり ます。このような不均一な工数配分も見直 しが必要です。 14 変換後のデータでタスク確認
15 タスク割当無しを見つけることもできる カレンダー メンバー 変換後のデータ crossing left_join
16 タスク割当無しを見つけることもできる
17 × ×
18 直積の威力 直積を使ってタスク管理データを変換し、粒度を細かくしました。 柔軟な集計が可能: 日付ごとにデータを持つことで、日次、週次、月次の 集計をコード修正のみで容易に行えるようになります。 負荷の平準化が容易: 各担当者の工数を日別に把握できるため、特定の日 に工数が集中していないか、計画の不均一性を視覚的に確認できます。 自動化のしやすさ:
プロジェクトの進行に合わせてタスク管理データを自 動的に更新・集計することが可能です。これにより、大規模プロジェクト でもタスク管理が効率的に行えます。