Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
直積は便利/direct_product_is_useful
Search
florets1
October 14, 2024
Business
3
450
直積は便利/direct_product_is_useful
florets1
October 14, 2024
Tweet
Share
More Decks by florets1
See All by florets1
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
430
Tableauとggplot2の背景/Background_of_Tableau_and_ggplot2
florets1
0
50
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
120
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
81
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
430
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
450
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.4k
butterfly_effect/butterfly_effect_in-house
florets1
1
270
データハンドリング/data_handling
florets1
2
260
Other Decks in Business
See All in Business
会社紹介資料202601.pdf
gmofh_hr_team
0
1.2k
HA-LU Inc.|カンパニーデック - 会社資料
halu_japan
1
550
LW_brochure_engineer
lincwellhr
0
40k
「回復の場」としてのコミュニティ
emi0726
0
710
ノッカリアドベントカレンダー全記録まとめ
szkm555
0
120
RDRAモデルからFP・工数・金額につなぐ定量見積り
bpstudy
0
190
なぜ、あのPdMは「時間がない」と言わないのか? ~元エンジニアPdMが実践する「ドキュメント化 x MCP」の全貌~
sam8helloworld
0
180
【SBO勉強会】感謝されるAI活用&ツール導入法
sakiyogoro
0
150
「2025年のAI」と「2026年のAI」
masayamoriofficial
1
1.2k
Morght 会社紹介資料_LAST UPDATED 2026.1
morght
1
7.6k
Just do it ! で 走り抜けてきたけど ちょっと立ち止まってみた
hakkadaikon
0
380
AI × アジャイルで、エンタープライズを動かす:文化に寄り添い、ビジネス価値を拡大する実践知 / AI × Agile: Driving Enterprise Transformation
yosuke_matsuura
PRO
0
1.3k
Featured
See All Featured
Statistics for Hackers
jakevdp
799
230k
How to make the Groovebox
asonas
2
1.9k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
400
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
240
Paper Plane (Part 1)
katiecoart
PRO
0
3.8k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
160
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
A Soul's Torment
seathinner
5
2.2k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
59
42k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.5k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.5k
Visualization
eitanlees
150
17k
Transcript
1 2024.10.19 Tokyo.R #115 直積は便利
2 タスク管理データ タスクA: 担当は秋田さんで、10/1から10/4 までの予定です。工数は32時間なので、1日 8時間で完了します。
3 タスクF: 担当は福井さんで、10/1から10/8 までの予定です。工数は64時間ですが、期 間中に土日が含まれるため、実際の稼働日 は6日間しかありません。そのため、1日の 工数は10時間を超えてしまいます。福井さ んは残業が発生しそうです。
4 次に、10月11日の秋田さんに注目します。 この日はタスクBとタスクCを担当する予定 ですが、それぞれ1日あたりの工数が8時間 で、合計16時間となってしまいます。この ため、計画の見直しが必要です。
5 また、福井さんの計画を詳しく見ると、工数の 偏りが見られます。例えば、 • 10月17日以降は1日4時間程度の余裕あり • 10月9日と10月10日は工数がゼロ 不均一な工数配分の見直しが必要です。
6 タスクの目視確認は困難 タスクの数が少ない場合は、前述のような問題も目視で確認できます。 しかし、プロジェクトが大規模になり、タスクが100件、さらには1000件 を超えるようになると、全体を把握することは非常に困難です。 目視での確認だけでは、見落としやミスが増えてしまうでしょう。
7 Excelでのタスク管理の限界 「Excelで自動的に確認できればいいのでは?」と考える人もいるかもし れません。しかし、Excelでタスク管理を行うのは意外と難しいのです。 複雑な関数を駆使すれば、特定の問題は解決できるかもしれませんが、別 の問題が発生した場合、さらに複雑な対応が必要になります。 例えば、月単位で集計していたデータを週単位で集計し直すといった場合、 シート全体を大幅に変更する必要があります。こうした柔軟性の欠如は、 Excelでのタスク管理の大きな制約です。
8 データ粒度の問題 タスク管理データが扱いにくい理 由の一つは、このデータの「粒 度」が粗いからです。 現在のタスク管理データでは、各 タスクは開始日と終了日だけで1行 にまとめられています。 もっと粒度を細かくして、日付単 位にしてやれば、扱いやすくなり
そうです。
9 直積 t1 t2 t3 crossing
10 タスクとカレンダーの直積 タスク カレンダー 変換 crossing
11 変換後のデータでタスク確認 タスクA: 担当は秋田さんで、10/1から 10/4までの予定です。工数は32時間なの で、 1日8時間で完了します。
タスクF: 担当は福井さんで、10/1から10/8 までの予定です。工数は64時間ですが、期 間中に土日が含まれるため、実際の稼働日 は6日間しかありません。そのため、1日の 工数は10時間を超えてしまいます。福井さ んは残業が発生しそうです。 12 変換後のデータでタスク確認
13 変換後のデータでタスク確認 次に、10月11日の秋田さんに注目します。 この日はタスクBとタスクCを担当する予定 ですが、それぞれ1日あたりの工数が8時間 で、合計16時間となってしまいます。この ため、計画の見直しが必要です。
福井さんの計画を詳しく見ると、工数の偏 りが見られます。 10月17日以降は1日4時間程度の余裕があり ます。このような不均一な工数配分も見直 しが必要です。 14 変換後のデータでタスク確認
15 タスク割当無しを見つけることもできる カレンダー メンバー 変換後のデータ crossing left_join
16 タスク割当無しを見つけることもできる
17 × ×
18 直積の威力 直積を使ってタスク管理データを変換し、粒度を細かくしました。 柔軟な集計が可能: 日付ごとにデータを持つことで、日次、週次、月次の 集計をコード修正のみで容易に行えるようになります。 負荷の平準化が容易: 各担当者の工数を日別に把握できるため、特定の日 に工数が集中していないか、計画の不均一性を視覚的に確認できます。 自動化のしやすさ:
プロジェクトの進行に合わせてタスク管理データを自 動的に更新・集計することが可能です。これにより、大規模プロジェクト でもタスク管理が効率的に行えます。