Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データハンドリング/data_handling
Search
florets1
July 11, 2024
Education
2
220
データハンドリング/data_handling
florets1
July 11, 2024
Tweet
Share
More Decks by florets1
See All by florets1
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
320
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
390
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.3k
直積は便利/direct_product_is_useful
florets1
3
390
butterfly_effect/butterfly_effect_in-house
florets1
1
200
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
280
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
請求と支払を照合する技術/using_full_join_in_r
florets1
2
260
応用セッション_同じデータでもP値が変わる話/key_considerations_in_NHST_2
florets1
1
1.2k
Other Decks in Education
See All in Education
GitHubとAzureを使って開発者になろう
ymd65536
1
120
2025年度春学期 統計学 第3回 クロス集計と感度・特異度,データの可視化 (2025. 4. 24)
akiraasano
PRO
0
130
Course Review - Lecture 12 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.7k
社外コミュニティと「学び」を考える
alchemy1115
2
170
生成AIとの上手な付き合い方【公開版】/ How to Get Along Well with Generative AI (Public Version)
handlename
0
490
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
7
1.3k
View Manipulation and Reduction - Lecture 9 - Information Visualisation (4019538FNR)
signer
PRO
1
2.1k
2025/06/05_読み漁り学習
nag8
0
150
実務プログラム
takenawa
0
6.4k
2025年度春学期 統計学 第2回 統計資料の収集と読み方(講義前配付用) (2025. 4. 17)
akiraasano
PRO
0
150
SkimaTalk Tutorial for Corporate Customers
skimatalk
0
290
自己紹介 / who-am-i
yasulab
PRO
3
5.2k
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Documentation Writing (for coders)
carmenintech
72
4.9k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
How STYLIGHT went responsive
nonsquared
100
5.6k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Visualization
eitanlees
146
16k
Gamification - CAS2011
davidbonilla
81
5.4k
It's Worth the Effort
3n
185
28k
Navigating Team Friction
lara
187
15k
Transcript
1 2024.07.13 Tokyo.R #114 データハンドリング
2 応募者の選考データ 雑然データ.csv 整然データ.csv
3 整然データは扱いやすい(1)
4 整然データは扱いやすい(2)
5 整然データは扱いやすい(3)
6 整然データは扱いやすい(4)
7 整然データは扱いやすい(5) いいところ:選考段階が三次、四次と増えてもコード変更なしで通過率を求めることができる
8 雑然データは扱いにくい(1)
9 雑然データは扱いにくい(2)
10 雑然データは扱いにくい(3) つらいところ:選考段階が増えるごとにコード変更が必要
11 雑然データを整然データに変換 整然データ.csv 雑然データ.csv pivot_longer
12 変換できたら後は同じ
13 整然データの定義(1) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。
14 整然データの定義(2) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 定義を満たしていない 変数が1つの列をなしていない
15 整然データの定義(3) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 定義を満たしていない 応募者NO.1、選考段階「一次」の観測で1行 応募者NO.1、選考段階「二次」の観測で1行 となってほしい
16 整然データの定義(4) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 定義を満たしている
17 整然データの定義(5) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 分ける ・一つの事実は一つの場所へ ・矛盾した登録を防げる
18 整然データの定義(6) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 1月応募.csv 2月応募.csv 3月応募.csv つなげる
19 整然データの定義(7) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 定義を満たしていない 1つのセルに複数の値が入っている
20 整然データの定義(8) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 分ける
雑然データに気を付けて データハンドリングが難しいなあ と感じたら、それは 雑然データかもしれません。 雑然データのままがんばるのではなく 整然データに変換できないか 検討してみましょう。