Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Digital Future Design
Search
Fumiya Akasaka
October 29, 2023
Research
0
100
Digital Future Design
Presented at ServDes.2023, Rio de Janeiro, Brazil (July 12th, 2023)
Fumiya Akasaka
October 29, 2023
Tweet
Share
More Decks by Fumiya Akasaka
See All by Fumiya Akasaka
Values of LLs in RDI
fumiyaakasaka
0
28
Platform-level Living Lab Canvas
fumiyaakasaka
0
190
Consciously drifting
fumiyaakasaka
0
220
共創のための地域基盤としての非公式組織の形成 / Informal community as an infrastructure for co-creation
fumiyaakasaka
2
750
Infrastructuringsocial labs
fumiyaakasaka
0
140
超高齢社会における未来の暮らしとそれを支えるテクノロジーのデザイン / Designing future lives and supportive digital technologies in a super-aging society
fumiyaakasaka
0
190
OLLD2023参加報告会 / OLLD2023 Reporting Event
fumiyaakasaka
0
150
Other Decks in Research
See All in Research
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
170
能動適応的実験計画
masakat0
2
830
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
19k
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
280
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
350
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
630
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
320
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
120
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
180
近似動的計画入門
mickey_kubo
4
1k
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
1.9k
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
0
190
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
950
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
A better future with KSS
kneath
239
17k
The Language of Interfaces
destraynor
162
25k
Balancing Empowerment & Direction
lara
4
670
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
2.6k
A Tale of Four Properties
chriscoyier
160
23k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Transcript
Digital Future Design: Designing Digital Service Systems based on Future
Visions Fumiya Akasaka, National Institute of Advanced Industrial Science and Technology (AIST), Japan,
[email protected]
Yuya Mitake, The University of Tokyo, Japan,
[email protected]
Kentaro Watanabe, AIST, Japan,
[email protected]
1 Yuri Nishikawa, AIST, Japan,
[email protected]
Jun Ozawa, AIST, Japan,
[email protected]
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Background
• Focus on “social innovation” (e.g., Manzini 14; Mulgan+ 07) ◦ Design for social innovation is required to achieve the sustainable society • “Digital tech” in service systems (e.g., Pekkala&Spohrer 19) ◦ Integrating advanced digital technologies with services is becoming important to increase the value and competitiveness ◦ Digital service also provide opportunities to address complex social issues • Smart city ◦ It originally aimed to overcome (urban) social issues using digital tech and services ◦ However, there are many criticisms on its technocentric approach that lacks a human-centered and social perspectives (Andreani+ 19) © 2023 AIST 2
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil SD
focusing on “social” & “digital” aspects • Design for social transformation ◦ Transition Design (Irwin 18): design approach to achieve social transformation toward a desirable future. Stakeholders are involved in future visioning and the long-term interventions ◦ Transformative SD (Sangiorgi 11), SD for social innovation (Yang&Sung 16): a participatory action research to implement the transformative interventions for achieving social change • Service System + Digital tech ◦ New system concepts: Smart service system (Lim&Maglio 18), Smart PSS (Valencia+ 15), Digital service system (Watanabe+ 20) ◦ Design methods: Developed mainly in Sys. Eng. and PSS research arena (e.g., Halstenberg+ 19; Li&Lu 21; Tsunetomo+ 22) Research gap: These two approaches, design for social transformation and DSS design, have been dealt with separately and rarely intersected, although they are key to social innovation © 2023 AIST 3
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Objective
and research approach • Approach: Design Research Methodology (Blessing&Chakrabarti 09) 1. Develop a design method: “Digital Future Design Method” to support the creation of the DSSs for realizing the social transformation to a desirable future vision 2. Apply the method to a design practice: the design of next-generation smart mobility services in the Kashiwa-no-ha Smart City in Japan 3. Reflect the application results: discussion on the usefulness and limitation of the proposed method based on the application results © 2023 AIST 4 Objective of this study is… To develop a new design method that integrates the social transformation approach with the DSS design approach
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Digital
Future Design Method (DFDM) © 2023 AIST 5 Designed from the comprehensive perspectives of the socio cyber-physical- system (Rijswijk+ 21) <Core principle> DFDM begins with visioning the desirable future society, and then embodies the DSS concepts. Digital Social Physical Collaborative Design Design Models Refer Support Designed with collaborative approach supported by several design models
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Proposed
design process and models © 2023 AIST 6 Detailed design, Prototyping, Experiments, etc. Step1: Multi-perspective context analysis Collaborative Model-based Step2: Future visioning Collaborative Model-based Step3: Vision-based concept design Collaborative Model-based Digital Future Hexagon for the analysis of Socio-CPS context Future Life Snapshots for ideating ang analyzing possible future life scenes Vision-Life- Function Model to structure the relations between vision, life scenes, and DSS functions
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Application
case • A project to design next-generation smart mobility services (MaaS) in the Kashiwa-no- ha Smart City (incl. Level-4 automated buses, various personal mobility vehicles, etc) • How to design future mobility services in relation to various components such as user values, urban resources, vision, and other domain services ? © 2023 AIST 7 Restaur ant Shopping center Street Mobility data City vision Mobility vehicles Automated bus Personal mobility vehicle Kashiwa-no-ha smart city Users
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Social
Physi cal Digi tal Step1: Multi-perspective Context Analysis • DFDM begins with Digital Future Hexagon, a multi-perspective context analysis based on the socio- CPS domains: (social, physical and digital) before future visioning and DSS concept generation © 2023 AIST 8 Life with various shared mobilities to allow comfortable transportation without private cars Walkable city Comfortable city life without a private cars Shopping/resta urant services Shopping center Personal mobility vehicles Eco-friendly transportation Mobility reservation Mobility management system Personal mobility availability Personal mobility occupancy data
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Step2:
Future visioning © 2023 AIST 9 • Images of desirable future society (future life snapshot) are envisioned based on the hexagon; then, the snapshots are summarized to created a future vision. Ideating the future life snapshots Integrating to create a future vision 1 2
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Step3:
Vision-based concept design © 2023 AIST 10 • Designers explore and describe DSS concept (as a set of key functions) Vision Life DSS Functions Abstract Concrete Zig-zag thinking
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Findings
• Usefulness ◦ DFDM is useful for the integrated design of two systems that have different levels of abstraction: future vision and DSSs ◦ The hexagon’s six perspectives provide “constraints” and “clues” in DSS idea generation -> effective in supporting creative thinking to explore new opportunities ◦ The design models was useful in supporting co-creation by visualizing and managing the results of workshops and discussions • Limitations ◦ This study only covers the early phases (i.e., the conceptual design) ◦ We need to apply it to other cases for verifying general usefulness © 2023 AIST 11
ServDes2023 | 11th-14th, July, 2023. Rio de Janeiro, Brazil Concluding
summary • We propose the DFDM, a novel design method that supports the designing of DSSs for realizing the social transformation to a desirable future ◦ Design models (Digital future hexagon, VLF diagram) and design processes • The method was applied to a case of smart mobility service design • We found the method is effective in … ◦ Supporting integrated thinking of different levels of abstraction: future vision and DSSs ◦ Providing stimulus (constraints and clues) in DSS idea generation ◦ Supporting co-creation activities by visualizing and managing the results of workshops and discussions • Future works will include … ◦ Development of additional method for designing more detailed DSS architecture ◦ Application to other domain cases © 2023 AIST 12
Thank you !! / Obrigado !! Do not hesitate to
contact me at: 13 fumiya.akasaka [at] aist.go.jp https://www.fumiyaakasaka.com/ https://www.facebook.com/fumiya.akasaka