Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
見積もり/agile-estimation
Search
Atsushi Harada
November 07, 2019
Technology
0
72k
見積もり/agile-estimation
Atsushi Harada
November 07, 2019
Tweet
Share
More Decks by Atsushi Harada
See All by Atsushi Harada
モジャイリーンな事業開発/mojilean-business-development
harada4atsushi
0
410
スクラムとモジャイル/scrum-and-mojile
harada4atsushi
0
8.1k
リーン・スタートアップとMVP/lean-startup-mvp
harada4atsushi
0
26k
リーンキャンバスの作り方/how-to-make-lean-canvas
harada4atsushi
0
9.3k
振り返り/agile-looking-back
harada4atsushi
0
21k
インセプションデッキの作り方/how-to-make-inception-deck
harada4atsushi
0
10k
もふもふなエンジニアの心得/mofmofinc-engineer-knowledge
harada4atsushi
0
7.8k
mofmof inc. 会社紹介 for 採用/mofmofinc-informatioin-for-recruiting
harada4atsushi
3
56k
Other Decks in Technology
See All in Technology
AI時代におけるアジャイル開発について
polyscape_inc
0
120
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
480
あなたの知らないDateのひみつ / The Secret of "Date" You Haven't known #tqrk16
expajp
0
120
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
390
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
0
150
世界最速級 memcached 互換サーバー作った
yasukata
0
260
Agents IA : la nouvelle frontière des LLMs (Tech.Rocks Summit 2025)
glaforge
0
460
freeeにおけるファンクションを超えた一気通貫でのAI活用
jaxx2104
3
1.4k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
手動から自動へ、そしてその先へ
moritamasami
0
250
Claude Code Getting Started Guide(en)
oikon48
0
160
Karate+Database RiderによるAPI自動テスト導入工数をCline+GitLab MCPを使って2割削減を目指す! / 20251206 Kazuki Takahashi
shift_evolve
PRO
1
290
Featured
See All Featured
Statistics for Hackers
jakevdp
799
230k
Typedesign – Prime Four
hannesfritz
42
2.9k
[SF Ruby Conf 2025] Rails X
palkan
0
470
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
How STYLIGHT went responsive
nonsquared
100
5.9k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
87
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Unsuck your backbone
ammeep
671
58k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Transcript
ݟੵΓ mofmof inc.
ソフトウェアの納期⾒積もりは、 星占いレベルのものであると思う 引⽤:メソッド屋のブログ http://simplearchitect.hatenablog.com/entry/2016/07/07/080250
• ਫ਼ • ݟੵΓ • ෆ࣮֬ੑ
不確実性コーン
時間をかければ ⾒積もり精度は上がる
⾒積もり=設計
⾒積もり⼿法の歴史 • LOC • FP • COCOMO • CoBRA •
KKD
⾒積もり精度の推移 精度 コスト(時間) '1 ϓϥϯχϯά ϙʔΧʔ ,,%
⾒積もりのタイミング ΩοΫΦϑ ϦϦʔε εϓϦϯτ ϓϩδΣΫτ
اը࣌ ΩοΫΦϑ࣌ εϓϦϯτܭը࣌
プランニングポーカー
͜ͷػೳɺ͘Β͍ͰͰ͖ΔΑͶʁ 営業
͍͍͘Β͍͔͔ΔΑ 営業 ベテラン エンジニア
͘Β͍ඞཁͩͱࢥ͍·͢ʂ 営業 ベテラン エンジニア 若⼿ エンジニア
ҰମԿΛ৴͡ Ε͍͍ʁ
• ૬ରݟੵΓ • νʔϜݟੵΓ • ετʔϦʔϙΠϯτ
͜ͷڇͷମॏԿΩϩ ͜ͷڇͷମॏԿΩϩ
͜ͷڇΩϩʂ
なぜ相対⾒積もりか • 相対的な基準があれば、簡単に⾒積もり の精度を上げることが出来る • ⼯数で絶対⾒積もりをすると、個⼈のス キルに依存した⾒積もりになってしまう • 実際には⾒積もる⼈と担当する⼈が違う ことも多いので、⾒積もりミスにつなが
る
ストーリーポイント • 個⼈のスキルに依存させないため、相対的な ⾒積もり尺度を「ポイント」で表現する • ストーリーポイント = 時間(⼯数)ではない • 基準となるユーザーストーリーと⽐較して、
どの程度複雑か、曖昧であるか、などを評価 して⾒積もる
基準ポイントの決め⽅ • 既に出ているストーリーの中から、全員 が理解できそうな⼀つのストーリーを決 めて、1ポイント or 3ポイントとする • 基準としてふさわしいものがなければ、 全員が認識を⼀致させる実装のイメージ
を使⽤しても良い
フィボナッチ数列(もどき)を使う • 0,1,2,3,5,8,13,20を使うことが多い • 規模が⼤きくなるほど正確に⾒積もれな くなる性質と、フィボナッチ数列が相性 が良い • ⼤きい単位の数字は細かく考えても精度 が上がることはないので考えるのはムダ
• ⼩さい単位に分割して⾒積もり可能にする
͜ͷௗΩϩʂ ͜ͷͷମॏʁ
• େ͖͍ετʔϦʔׂ • ཧɿʙϙΠϯτ • ϙΠϯτʙநߴΊ
議論をする • チーム全体で⾒積もる • ⾒積もりの差異が出た場合、何か考慮漏れ、ある いは考慮しすぎである可能性がある • ズレ幅が最も⼤きい⼈同⼠で、その⾒積もりをし た理由を説明し、その情報を追加した上で再度⾒ 積もる
• 議論の最中にカードを出し直してもOK • 議論が終わってから全員でもう⼀度⾒積もりしな おすでもOK
実際にやってみよう
ςʔϚ தͷՆٳΈͷ॓
10ઌੜ ߨࢣ ϝϯόʔੜె Έͳ͞Μ
お客様の中に経験者いますか?
流れ 1. 基準の1ptとなるストーリーを決める 2. ストーリーを⼀つずつ読み、以下繰り返し 1. ストーリーの単位が⼤きすぎる場合は分割する 2. 必要であればPOに確認して、ストーリーを詳細 化する
3. 全員で専⽤カードを使って⾒積もりする 4. ⾒積もり差異について議論する 5. チームで⼀つの⾒積もりを合意して決める
ポーカーのやり⽅ • ストーリーの詳細を読んだら基準ポイン トに対してどの程度のボリュームか⾒積 もり、カードを裏返しで出す • 全員がカードを出したら⼀⻫に表にする
Appendix
ग़དྷΔͬͯ ݴͬͨΑͳʁ
τϨʔυΦϑͷؔΛ ߹ҙ͓ͯ͜͠͏
参考:プランニングポーカー https://speakerdeck.com/ryuzee/planning_poker_guide
参考 https://www.slideshare.net/taguchimasahiro/ss-44419906