Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Slackbot × RAG で実現する社内情報検索の最適化
Search
howdy39
October 02, 2024
Technology
2
600
Slackbot × RAG で実現する社内情報検索の最適化
howdy39
October 02, 2024
Tweet
Share
More Decks by howdy39
See All by howdy39
AI新時代 情シスが向き合うべきAI活用戦略
howdy39
0
200
GAS x スプレッドシート x Looker Studio を組み合わせたデバイス管理 / DeviceMangent with GAS, SpreadSheet, Looker Studio
howdy39
3
1.7k
ChatGPTを使った 社内アシスタントBOTを作りました / ChatGPT Assistant Bot
howdy39
0
730
WebPagetestで始めるパフォーマンス計測 / Performance measurement starting with WebPagetest
howdy39
4
710
Storybookを用いたVue.js共通コンポーネント開発との戦い / stores-fights-storybook
howdy39
5
8.8k
gas-webpagetestで パフォーマンス計測を始めよう / get-started-measuring-performance-with-gas-webpagetest
howdy39
0
2.5k
Promise
howdy39
1
400
カラーユニバーサルデザイン / color universal design
howdy39
0
980
Geolocation API
howdy39
0
120
Other Decks in Technology
See All in Technology
特別捜査官等研修会
nomizone
0
550
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.2k
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
110
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
430
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
8
2k
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
130
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
150
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
190
202512_AIoT.pdf
iotcomjpadmin
0
140
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.1k
AlmaLinux + KVM + Cockpit で始めるお手軽仮想化基盤 ~ 開発環境などでの利用を想定して ~
koedoyoshida
0
150
Identity Management for Agentic AI 解説
fujie
0
440
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
28
Practical Orchestrator
shlominoach
190
11k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Building Applications with DynamoDB
mza
96
6.8k
We Are The Robots
honzajavorek
0
120
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
25
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
130
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Transcript
Slackbot × RAG で実現する社内情報検索 の最適化 STORES 株式会社 中野 達也 1
自己紹介 STORES 株式会社 IT本部 シニアマネージャー 中野 達也@howdy39 SIerやフリーランスでソフトウェアエンジニア →(STORES)フロントエンドエンジニア →(STORES)情シス
2 2
どんな Slackbot をつくってるの? どのような仕組み? RAGのノウハウを紹介 目次 3
どんな Slackbot をつくってるの? 4
Slackで質問を投げかけると社内のドキュメントを読み込んで回答してくれるBOTを作成 5 5
BOTがあることで、ドキュメントを探すコストを下げられる 6 6 BOTがあることで、ドキュメントを探すコストを下げられる ヘルプデスク工数のコスト
どのような仕組み? 7
RAGで実現 8 8 ベクトル情報 を登録・更新 ・削除 Embedding (ベクトル 化) Webhookで
記事情報を送 信 質問する 実行 ベクトルで記 事を検索 Embedding (ベクトル 化) 記事内容を入 れて質問 回答結果を返 す 記事を 作成・更新・ 削除
RAGはフローが大きく2つにわかれるのでどこの話をしているかのイメージが大事 9 9 ベクトル情報 を登録・更新 ・削除 Embedding (ベクトル 化) Webhookで
記事情報を送 信 質問する 実行 ベクトルで記 事を検索 Embedding (ベクトル 化) 記事内容を入 れて質問 回答結果を返 す 記事を 作成・更新・ 削除 ベクトルDBへ格納 ベクトルDBから検索
「ベクトルDBへ格納」の詳細 10 10
「ベクトルDBから検索」の詳細 11 11
RAGのノウハウを紹介 12
ノウハウその1「初期データの反映」と「差分データの反映」の設計が大事 13 13 差分データの反映 初期データの反映 インポートするだけなので 簡単 難しい Webhookがあればいいが ない場合にどうするかの設
計が大事
ノウハウその2 マークダウンから無駄なデータを削ぎ落として登録 14 14 ここ!
ノウハウその2 マークダウンから無駄なデータを削ぎ落として登録 | コード例 15 15 imgタグを除去 brタグを削る 4つ以上の罫線の ”-”,
“=”, “〜” を3つに減らす 太字 “**” を除去 2つ以上のスペースを1つ に減らす 複数の改行を1つに減らす
記事の内容にもよるが 適当な記事をピックアップしたところ 文字数が 39,219→20,025 に削減 ノウハウその2 マークダウンから無駄なデータを削ぎ落として登録 | 削減効果 16
16 500文字ずつチャンクしたとしたら 分割数が80→40まで削減できた
ノウハウその3 データを収集するのが大事 17 17 ここ
ノウハウその3 データを収集するのが大事 | 例 18 18 これ
ノウハウその3 データを収集するのが大事 | 可視化 19 19 フィードバック メッセージを返却 (ランダム) フィードバック結果
のログをスプレッド シートに残す 利用状況とフィード バックをLooker Studioで可視化
ノウハウその4 Rerankを必ず入れる 20 20 ここ
ノウハウその4 Rerankを必ず入れる | チャンクを多く取ってRerankで絞る 21 21 100チャンクを Rerankして上位10 チャンクを取得 ※
類似度:高 topN=100 のチャンクを取得 ※ 類似度:低
Slackbot x RAG 環境を作り従業員の業務効率を向上させよう (ついでに情シスのヘルプデスク工数を削減する) RAGの全体像(登録フロー, 検索フロー)イメージしながら設計・ 実装・改善をしていくとよい まとめ 22
22
ご清聴ありがとうございました! 23