Upgrade to Pro — share decks privately, control downloads, hide ads and more …

回帰分析の活用による新商品の販売力予測

 回帰分析の活用による新商品の販売力予測

2022/05/13(金)に開催したExploratory データサイエンス勉強会#23の株式会社ロッテ様のご登壇資料です。

Ikuya Murasato

May 13, 2022
Tweet

More Decks by Ikuya Murasato

Other Decks in Business

Transcript

  1. ⾃⼰紹介 名前:中澤 政紀 年齢:33歳 居住地:群⾺ ⇒ 滋賀 ⇒ 福岡 ⇒

    ⿅児島 ⇒ 東京 経歴: 2013年 ロッテアイス⼊社(営業) 2017年 商品開発部(ガーナアイス、モナ王、スイカバー etc..) 2019年 事業企画課(⾃社・他社分析、売上利益管理) 2021年 新ブランド開発課(新しいブランド⽴ち上げるぜ!!) 2022年 リサーチ課(消費者調査)
  2. 新商品における課題 デザイン 担当者の好み 決裁者の感覚 各担当が個別に調査 属⼈的 売上 前年並み? 担当者の感覚 出たとこ勝負

    勘や経験に頼らずにどの くらいの売上になりそうか 分からないだろうか? Exploratoryのブートキャンプで学んだことを 活かせば解決できるのでは? なんか、予測とか変数重要度とかあったし! 売上予測したい お客様に⼿に取ってもらえる デザインとは⼀体…? 判断基準がほしい
  3. チョコレート アイス R2乗 0.37 0.77 RMSE 0.32 1.46 MAPE 10.5

    % 14.1 % 考察 データを溜めて精度を 上げる必要はあるが、 誤差のレベルは許容範囲内 季節要因もあり誤差が⼤きい データを溜めて各指標の 関係性や⼊れ替えも随時検討 ⽬指せ0.8! せめて0.5は 超えたい… 10%付近に したい… 感覚的に… 1. 予測精度の評価
  4. 商品名 販売⼒ 変数7 変数11 変数32 変数14 ガーナ いちご 2.8 5

    180 50 10 トッポ 抹茶 2.3 5 150 40 8 商品名 販売⼒ 変数7 変数11 変数32 変数14 ガーナ いちご ? 5 180 50 10 トッポ 抹茶 ? 5 150 40 8 25 線形回帰 モデル 2.デザイン調査により新商品の販売⼒を予測 予測モデルのためのデータ 予測する
  5. 5. 結果をもとに今後のアクションを決める 販売⼒の予測値 (店舗当たり個数) ランク 3個以上 A 2個以上 B 1個以上

    C 改善の余地あり 再検討… いい感じかも♪ A B C 新商品に対する意思決定を、 ランクに基づいて⾏えるようになった