Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Aleatoriedade no Coração dos Algoritmos do Futuro
Search
Juan Lopes
March 29, 2016
Technology
1
920
Aleatoriedade no Coração dos Algoritmos do Futuro
Juan Lopes
March 29, 2016
Tweet
Share
More Decks by Juan Lopes
See All by Juan Lopes
Estruturas de dados que suportam 300 mil jogadores simultâneos
juanplopes
1
200
ESTRUTURAS DE DADOS PROBABILÍSTICAS PARA REPRESENTAÇÃO DE GRAFOS GIGANTES
juanplopes
0
94
Sketching data structures for massive graph problems
juanplopes
0
520
Big Graph: Big Data aplicado a grafos gigantes e dinâmicos
juanplopes
0
630
Representações implícitas probabilísticas de grafos
juanplopes
0
320
Nubank Machine Learning Meetup
juanplopes
1
260
Lucene Escala? Full-text para Big Data com hardware modesto
juanplopes
2
810
Algoritmos no Fronte de Batalha
juanplopes
1
210
Other Decks in Technology
See All in Technology
SREの視点で考えるSIEM活用術 〜AWS環境でのセキュリティ強化〜
coconala_engineer
1
250
いつも初心者向けの記事に助けられているので得意分野では初心者向けの記事を書きます
toru_kubota
2
270
Ops-JAWS_Organizations小ネタ3選.pdf
chunkof
2
120
フロントエンドも盛り上げたい!フロントエンドCBとAmplifyの軌跡
mkdev10
2
240
OSSコントリビュートをphp-srcメンテナの立場から語る / OSS Contribute
sakitakamachi
0
1.3k
10分でわかるfreeeのQA
freee
1
12k
50人の組織でAIエージェントを使う文化を作るためには / How to Create a Culture of Using AI Agents in a 50-Person Organization
yuitosato
6
3.2k
SDカードフォレンジック
su3158
0
100
NLP2025 参加報告会 / NLP2025
sansan_randd
4
510
SREが実現する開発者体験の革新
sansantech
PRO
0
160
Classmethod AI Talks(CATs) #21 司会進行スライド(2025.04.17) / classmethod-ai-talks-aka-cats_moderator-slides_vol21_2025-04-17
shinyaa31
0
440
食べログが挑む!飲食店ネット予約システムで自動テスト無双して手動テストゼロを実現する戦略
hagevvashi
1
160
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
How STYLIGHT went responsive
nonsquared
99
5.5k
Producing Creativity
orderedlist
PRO
344
40k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Scaling GitHub
holman
459
140k
GitHub's CSS Performance
jonrohan
1030
460k
Embracing the Ebb and Flow
colly
85
4.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
Product Roadmaps are Hard
iamctodd
PRO
52
11k
The Cult of Friendly URLs
andyhume
78
6.3k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
9
740
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
104
19k
Transcript
None
MACHINE LEARNING RESOLVE MUITA COISA MAS NÃO É SEMPRE A
MELHOR SOLUÇÃO.
DETECTAR PLÁGIO EM BILHÕES DE TEXTOS
DETECTAR SIMILARIDADE EM BANCOS DE DADOS DE IMAGENS
ESTIMAR INTERSEÇÃO DE CONJUNTOS, SEM PRECISAR TÊ-LOS PRÓXIMOS GEOGRAFICAMENTE.
ALEATORIEDADE NO CORAÇÃO DOS ALGORITMOS DO FUTURO
• PAI DO MIGUEL • BACHAREL E QUASE MESTRE •
PROGRAMADOR • VICIADO EM COMPETIÇÕES QUEM É JUAN LOPES?
SLIDES, LINKS E DEMOS TWITTER E GITHUB
ALGORITMOS RANDOMIZADOS
• HASHTABLES • GERAÇÃO DE PARES DE CHAVES CRIPTOGRÁFICAS •
RANDOMIZED QUICKSORT ALGORITMOS RANDOMIZADOS
None
RANDOMIZED ALGORITHMS
None
INTRODUÇÃO AOS ALGORITMOS RANDOMIZADOS
MINING OF MASSIVE DATASETS
ALGORITMOS RANDOMIZADOS PROBABILÍSTICOS
VAMOS FALAR DE POLÍTICA?
QUAL É A BASE TEÓRICA DE UMA PESQUISA ELEITORAL?
QUAL É A BASE TEÓRICA DE UMA ESTIMATIVA DE PARTICIPANTES?
PROBABILIDADE E ESTATÍSTICA
VARIÁVEL ALEATÓRIA X
VARIÁVEL ALEATÓRIA X ROLAGEM DE DADO DE 6 LADOS
ESTIMADORES NÃO- ENVIESADOS
COMO CRIAR UMA VARIÁVEL ALEATÓRIA QUE ESTIME ALGUM VALOR IMPORTANTE?
A OPINIÃO DE UM INDIVÍDUO ALEATÓRIO EM UMA POPULAÇÃO É
UM ESTIMADOR DA OPINIÃO DA POPULAÇÃO
A QUANTIDADE DE PESSOAS EM UM TRECHO DE UMA MANIFESTAÇÃO
É UM ESTIMADOR DO NÚMERO TOTAL DE PESSOAS
COMPOSIÇÃO DE ESTIMADORES DIMINUI A VARIÂNCIA
• FILTRO DE BLOOM [Blo70] • CM-SKETCH [CM05] • MINHASH
[Bro97] • HYPERLOGLOG [FFGM08] ESTRUTURAS PROBABILÍSTICAS
1970 1990 1980 2000 2010 LINHA DO TEMPO FILTRO DE
BLOOM [Blo70] FM-SKETCH [FM85] MINHASH [Bro97] KMV-SKETCH [BYJK+02] LSH THEORY [IM98] SIMHASH [Cha02] LOGLOG [DF03] AMS PAPER [AMS96] CM-SKETCH [CM05] HYPERLOGLOG [FFGM08] SPECTRAL BLOOM [CM03]
– DONALD KNUTH HASH FUNCTIONS
HASH FUNCTIONS x h(x) 0: 50% 1: 50% 0: 50%
1: 50% 0: 50% 1: 50% …
MINHASH [Bro97] Andrei Z Broder. On the resemblance and containment
of documents. In Compression and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.
MINHASH • VARIÁVEL DE BERNOULLI • ÍNDICE DE JACCARD •
DUAS VARIANTES
MINHASH, COM CALMA A B
A B MINHASH, COM CALMA
A B A B MINHASH, COM CALMA
CALMA!
MINHASH • CADA FUNÇÃO DEFINE UM ESTIMADOR NÃO-ENVIESADO • MÚLTIPLAS
FUNÇÕES DE HASH • COMPARAÇÃO DOS VALORES DE CADA ASSINATURA
MINHASH • ASSINATURA DEFINIDA POR K MENORES VALORES • TAMBÉM
É VARIÁVEL DE BERNOULLI • COMPARAÇÃO DOS VALORES DE CADA ASSINATURA
MINHASH • PODE SER 1 COM PROBABILIDADE p E 0
COM PROBABILIDADE 1-p
MINHASH
MINHASH • 42 OBRAS DE SHAKESPEARE • 84 DOCUMENTOS NO
TOTAL • 0 ≤ K ≤ 1000
MINHASH S 1 S 2 S 3 S 4 S
5 h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8
MINHASH S 1 S 2 S 3 S 4 S
5 h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 r=2 }
MINHASH S 1 S 2 S 3 S 4 S
5 r 1 h 1 h 2 r 2 h 3 h 4 r 3 h 5 h 6 r 4 h 7 h 8 }r=2 { b=4
MINHASH S 1 S 2 S 3 S 4 S
5 r 1 h 1 h 2 r 2 h 3 h 4 r 3 h 5 h 6 r 4 h 7 h 8 S 1 S 4
MINHASH S 1 S 2 S 3 S 4 S
5 r 1 h 1 h 2 r 2 h 3 h 4 r 3 h 5 h 6 r 4 h 7 h 8 S 2 S 5 S 1 S 4
MINHASH S 1 S 2 S 3 S 4 S
5 r 1 h 1 h 2 r 2 h 3 h 4 r 3 h 5 h 6 r 4 h 7 h 8 S 2 S 5 S 2 S 5 S 1 S 4
MINHASH S 1 S 2 S 3 S 4 S
5 r 1 h 1 h 2 r 2 h 3 h 4 r 3 h 5 h 6 r 4 h 7 h 8 S 1 S 4 S 2 S 5 S 2 S 5 S 2 S 5 S 2 S 5 S 2 S 5 S 1 S 4
MINHASH S 1 S 2 S 3 S 4 S
5 r 1 h 1 h 2 r 2 h 3 h 4 r 3 h 5 h 6 r 4 h 7 h 8 S 1 S 4 S 2 S 5 S 2 S 5 S 2 S 5 S 1 S 4 S 2 S 5 S 2 S 5 S 1 S 4
MINHASH • PROBABILIDADE DE UM PAR SER ESCOLHIDO DEPENDE DA
SIMILARIDADE ENTRE OS CONJUNTOS
MINHASH • PROBABILIDADE DE UM PAR SER ESCOLHIDO DEPENDE DA
SIMILARIDADE ENTRE OS CONJUNTOS
MINHASH • 42 OBRAS DE SHAKESPEARE • 84 DOCUMENTOS NO
TOTAL • K = 512
SIMHASH
SIMHASH
SIMHASH r⃗ u⃗ v⃗
SIMHASH • FUNÇÃO DE HASH DEFINIDA POR VETOR ALEATÓRIO •
ESTIMATIVA DO MENOR ÂNGULO ENTRE DOIS VETORES
SIMHASH • REPRESENTAÇÃO COMPACTA • COMPUTAÇÃO EFICIENTE • REPRESENTA MULTICONJUNTOS
FACILMENTE
None
HYPERLOGLOG [FFGM08] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric
Meunier. Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm. DMTCS Proceedings, (1), 2008.
É COMO ESTIMAR O NÚMERO DE PESSOAS EM UMA MULTIDÃO
PELA ALTURA DA MAIOR PESSOA
HYPERLOGLOG • BASEIA-SE NA OBSERVAÇÃO DO PADRÃO DE BITS
HYPERLOGLOG 0 0 0 0 0 0 0 0
HYPERLOGLOG A 0 0 0 3 0 0 0 0
01000101
HYPERLOGLOG B 0 0 0 3 0 0 1 0
11010011
HYPERLOGLOG C 0 0 0 5 0 0 1 0
01000001
HYPERLOGLOG C 0 0 0 5 0 0 1 0
01000001 CADA POSIÇÃO NESTE ARRAY DE EXEMPLO USA APENAS 3 BITS
HYPERLOGLOG C 0 0 0 5 0 0 1 0
01000001
HYPERLOGLOG • SE O VALOR ESTIMADO FOR MUITO BAIXO (<2.5M),
USA- SE LINEAR COUNTING NO MESMO VETOR • A ESTIMATIVA TEM UM VIÉS MULTIPLICATIVO CONSTANTE QUE PRECISA SER CORRIGIDO
“LOGLOG” VEM DA QUANTIDADE DE MEMÓRIA NECESSARIA PARA CADA SUBFLUXO.
LOGLOG(2^32) = 5 BITS
HYPERLOGLOG++
HYPERLOGLOG++
COMO ENGENHEIROS RESOLVEM PROBLEMAS: goo.gl/iU8Ig 18 PÁGINAS DE CONSTANTES
HYPERLOGLOG
HYPERLOGLOG • 42 OBRAS DE SHAKESPEARE
OPERAÇÕES SOBRE HYPERLOGLOGS
INTERSEÇÃO DE HYPERLOGLOGS • IDEIA SIMPLES • O PROBLEMA
INTERSEÇÃO DE HYPERLOGLOGS • MINHASH × HYPERLOGLOG • ERRO CONTROLADO
• SÃO MUITO IMPORTANTES QUANDO HÁ RESTRIÇÃO DE RECURSOS •
ÁREA DE PESQUISA RECENTE • ATRAI MUITO INTERESSE DOS BIG PLAYERS • IMPLEMENTAR É MAIS SIMPLES QUE EXPLICAR ESTRUTURAS PROBABILÍSTICAS
SLIDES, LINKS E DEMOS TWITTER E GITHUB PERGUNTAS?
OBRIGADO!