Upgrade to Pro — share decks privately, control downloads, hide ads and more …

感染症の数理モデル4

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

 感染症の数理モデル4

Avatar for Daisuke Yoneoka

Daisuke Yoneoka

April 19, 2024
Tweet

More Decks by Daisuke Yoneoka

Other Decks in Research

Transcript

  1. ⽬次 1. 感染症のコンパートメントモデル 2. 基本再⽣産数 3. 最終流⾏規模 4. R実装 5.

    ⼈⼝の異質性とSIR 6. 再⽣産⽅程式とエボラ vs インフル 7. R0 の推定⽅法(流⾏初期) 8. 内的増殖率の検定 本書の内容をカバーします。 具体的なコードなどは右の本 詳細なプログラムなどは https://github.com/objornstad/epimdr/tree/ master/rcode (結構間違ってる。。。) 2/48
  2. 最終流⾏規模 (Final epidemic size) もうちょっと現実的に⼈⼝あたりで考える SIRには2つの均衡点 (s, i, r) =

    (1, 0 , 0)と(s*, 0, r*) 8/20 t→∞としたときに感染者は0⼈になり、 s* (= s(∞)): 何%が感染を逃れたか r* (= r(∞)): 何%が感染したか <latexit sha1_base64="GZ7GT/t1BrHuSYH75Oq0B+oFT9Y=">AAACunicfVFda9RAFJ2NH63xo1t99GVwUUTskohVHyoU9cEXsYLbFjbLcjO5SYedyYSZG3EJ+Yf+Af+Gr/rgZJsVuxUvDBzOOXfu3DNppaSjKPo+CK5cvXZ9a/tGePPW7Ts7w927x87UVuBEGGXsaQoOlSxxQpIUnlYWQacKT9LF204/+YLWSVN+pmWFMw1FKXMpgDw1H+aPkiy3IJrMtU1GLX/N95IUCbjjkidJ+EeXa533uuR7PClAa9hw2rVzrYbhfDiKxtGq+GUQ92DE+jqa7w4OksyIWmNJQoFz0ziqaNaAJSkUtmFSO6xALKDAqYclaHSzZhVIyx96JuO5sf6UxFfs3x0NaOeWOvVODXTmNrWO/Jc2rSl/NWtkWdWEpTgflNeKk+FdujyTFgWppQcgrPRv5eIMfCrk/+DClO5uMkY5v8o79Cta/OCpjxVaIGOfNAnYQsuy9SsXydMO/c8IX9dGj1Z5x5vpXgbHz8bxi/H+p+ejwzd98tvsPnvAHrOYvWSH7D07YhMm2Df2g/1kv4KDIA1ksDi3BoO+5x67UAH9BsO72J4=</latexit> ds dt = si di dt = si i dr dt = i <latexit sha1_base64="TWw88aSbJzklo45MPjvq1kp19nw=">AAACinicfZDfThNBFManKyBWkCKX3kxsTAwhzS5B/gRJiHKhFygqBZJu05ydni0TZmc2M2eNzWbfxKfxVl/At3G2rUHAcJJJvvzON3PmfEmupKMw/N0IHszNLzxcfNR8vLT8ZKW1+vTMmcIK7AqjjL1IwKGSGrskSeFFbhGyROF5cvW27p9/Reuk0ac0zrGfwUjLVAogjwatbccPeDxMLYjyS1V+qDa4vCbvp8Rek8814c1Bqx12wknxuyKaiTab1clgtfE6HhpRZKhJKHCuF4U59UuwJIXCqhkXDnMQVzDCnpcaMnT9crJgxV94MuSpsf5o4hP6740SMufGWeKdGdClu92r4f96vYLS3X4pdV4QajEdlBaKk+F1WnwoLQpSYy9AWOn/ysUl+CDIZ3pjSv02GaOcX+UI/YoWjz36mKMFMna9jMGOMqkrv/Io3qjVfUb49tfoVbPOO7qd7l1xttmJtjuvPm21D9/Mkl9kz9hz9pJFbIcdsnfshHWZYN/ZD/aT/QqWgs1gL9ifWoPG7M4au1HB0R/C28bI</latexit> s = S N , i = I N , r = R N <latexit sha1_base64="Aw425Lop8YfQ4vugYIF3fQA859A=">AAACuXicfVHbjtMwEHXDbQm3LjzyYlGBEGKrBHGTAGkFPNAHxMLS3ZWaqpo4k9SsHUf2BFFF+UK+gM/gFV5wui3aC2IkS0fnnPF4jtNKSUdR9KMXnDt/4eKljcvhlavXrt/ob97cc6a2AsfCKGMPUnCoZIljkqTwoLIIOlW4nx6+6fT9r2idNOVnWlQ41VCUMpcCyFOzPt5LstyCaLLdtsmo5a/4VpIiAd/lI54k4V99tNb5Sh/xLZ4UoDXw0XHjp7VxLYbhrD+IhtGy+FkQr8CArWpnttl7mWRG1BpLEgqcm8RRRdMGLEmhsA2T2mEF4hAKnHhYgkY3bZZ5tPyuZzKeG+tPSXzJHu9oQDu30Kl3aqC5O6115L+0SU3582kjy6omLMXRoLxWnAzvwuWZtChILTwAYaV/Kxdz8KmQ/4ITU7q7yRjl/Cpv0a9o8b2nPlRogYx90CRgCy3L1q9cJA879D8jfFsbPVrmHZ9O9yzYezSMnw6ffHw82H69Sn6D3WZ32H0Ws2dsm71jO2zMBPvOfrJf7HfwIoBgHnw5sga9Vc8tdqIC9wfgutdU</latexit> dS dt = SI dI dt = SI I dR dt = I <latexit sha1_base64="xH6Y+u0OyWqjHpz+UFtZmTKuzBw=">AAACa3icfVBdSxtBFJ2sttX0K+qDYPswNAhWatgt2vZBIVgf+lJqS6NCNg13JzfJkNmZZeZuMSz5Nb7qD/JH+B+cTVKoWnph4My5586dc5JMSUdheF0JFhYfPX6ytFx9+uz5i5e1ldUTZ3IrsCWMMvYsAYdKamyRJIVnmUVIE4Wnyehz2T/9jdZJo3/SOMNOCgMt+1IAeapbW+f21zY/4NFOjOfZ1o6//eiGb3m3Vg8b4bT4QxDNQZ3N67i7UtmPe0bkKWoSCpxrR2FGnQIsSaFwUo1zhxmIEQyw7aGGFF2nmDqY8E3P9HjfWH808Sn790QBqXPjNPHKFGjo7vdK8l+9dk79T51C6iwn1GK2qJ8rToaXcfCetChIjT0AYaX/KxdDsCDIh3ZnS/k2GaOct3KE3qLFr576lqEFMna7iMEOUqkn3vIgflei/wnh/I/Qo2rV5x3dT/chOHnfiD409r7v1puH8+SX2Cv2hm2xiH1kTfaFHbMWE2zCLtglu6rcBGvBRvB6Jg0q85k1dqeCzVssRLpl</latexit> r⇤ = 1 exp( r⇤R0) <latexit sha1_base64="y4Drxc9cmIJphOIsqsikfGkQF1o=">AAACkHicfVDbahRBEO0db3G9ZBMffWlchBjMMiOa5CFivDyIIEZxk8DOutT01kya9GXsrgkuw/yMX+Orvvk39mw2YBKxoJvDOVVdfU5WKukpjn93oitXr12/sXSze+v2nbvLvZXVfW8rJ3AorLLuMAOPShockiSFh6VD0JnCg+z4dasfnKDz0prPNCtxrKEwMpcCKFCT3s6nScxT/FrJE55OcweiTjMkaOq0AK2h4c/5xpmgbLGWbLgv64+aOtzNpNePB/G8+GWQLECfLWpvstLZSadWVBoNCQXej5K4pHENjqRQ2HTTymMJ4hgKHAVoQKMf13ObDX8YmCnPrQvHEJ+zf0/UoL2f6Sx0aqAjf1FryX9po4ry7XEtTVkRGnG6KK8UJ8vbzPhUOhSkZgGAcDL8lYsjCJFQSPbclvZtslb5YOUNBosO3wfqQ4kOyLr1OgVXaGmaYLlIH7fof43w7awxoG435J1cTPcy2H8ySDYHzz4+7e++WiS/xO6zB2yNJWyL7bK3bI8NmWDf2Q/2k/2KVqPt6EX08rQ16ixm7rFzFb37A4hZykI=</latexit> R0 ⌘ = log(1 r⇤) r⇤ 新しい基本再⽣産数 r*にてつい て解く (解析的には解けないので)数値計算 <latexit sha1_base64="lxjKR111eVZZbnFb7RGt1wYQNmw=">AAACbnicfVBdaxNBFJ1sq7bxK63Qh4o4GIRY2rAravvgQ6l98EWsYtpCNoa7k5t06OzMMHNXEpaAv8ZX+3f6L/oTOptGsK14YeBw7rn3zjmZVdJTHJ/XooXFO3fvLS3X7z94+OhxY2X10JvCCewIo4w7zsCjkho7JEnhsXUIeabwKDv9UPWPfqDz0uhvNLHYy2Gk5VAKoED1G+vcfd/gKVjrzJgnWymObWvraz9+xfuNZtyOZ8Vvg2QOmmxeB/2V2vt0YESRoyahwPtuElvqleBICoXTelp4tCBOYYTdADXk6HvlzMSUvwzMgA+NC08Tn7F/T5SQez/Js6DMgU78zV5F/qvXLWi40yultgWhFleHhoXiZHiVCB9Ih4LUJAAQToa/cnECDgSF3K5dqXaTMcoHK/sYLDr8FKjPFh2QcRtlCm6USz0NlkfpZoX+J4TxH2FA9XrIO7mZ7m1w+LqdvGu//fKmubs3T36JPWUvWIslbJvtso/sgHWYYD/ZL/abndUuorXoWfT8ShrV5jNP2LWKWpchkrxC</latexit> r⇤ ⇡ 1 exp( R0) R0 が⼤きいとき はr*≒1なので R0 だけから、最終的な流⾏規模が⾒積もれる! 求め⽅:上の3番⽬を1番⽬に代⼊し て積分するだけ
  3. R0 の統計的推測 (1) 今までは、γやβは天下り的に与えてきた→データから推定したいよね 再⽣産⽅程式 時刻 tにおける新規感染者数 I(t) は、a⽇前の過去の新規感染者数を I(t−a)を⽤いて

    33 <latexit sha1_base64="KRYtOBHRA80qCdkLhBLyz4qB/bc=">AAACeHicfVBNbxMxEHWWj5bw0bQcuRgiRILaaLeCwgVRWg5wQBSJtJWyIZp1ZlOr/ljZs4holTO/hiv9Lf0rPdWbBom2iJEsP7034/F7WaGkpzg+bUQ3bt66vbR8p3n33v0HK63VtX1vSyewL6yy7jADj0oa7JMkhYeFQ9CZwoPseLfWD76j89KarzQtcKhhYmQuBVCgRq3HHzvU5W94Kg2N4m/hymnK33WgG4QN6I5h1GrHvXhe/DpIFqDNFrU3Wm28TcdWlBoNCQXeD5K4oGEFjqRQOGumpccCxDFMcBCgAY1+WM29zPjTwIx5bl04hvic/XuiAu39VGehUwMd+ataTa5n+l/yoKT89bCSpigJjbjYlZeKk+V1NnwsHQpS0wBAOBm+y8UROBAUEry0qH6brFU+uHmPwaXDT4H6XKADsu55lYKbaGlmwfUkXa/R/xrhx5/GgJrNEHlyNeDrYH+zl2z1Xn550d7eWYS/zB6xJ6zDEvaKbbMPbI/1mWA/2S/2m500ziIePYu6F61RYzHzkF2qaPMcMWi/2A==</latexit> I(t) = Z 1 0 A(a)I(t a)da <latexit sha1_base64="vFZ72HbnVeU8w6LkYvqK9aOFGaY=">AAACb3icfVBdaxNBFJ2sVdv4leqDhYIMBqGVEnZLtX0RW/XBF7GKaQvZuNyd3E2Hzscyc1cMS/pr+lr/jz/Df+BsGsG24oVhDueeO3fOyUslPcXxz1Z0Y+HmrduLS+07d+/df9BZfnjgbeUE9oVV1h3l4FFJg32SpPCodAg6V3iYn7xt+off0HlpzRealDjUMDaykAIoUFln5XMWv0qloSz+Gq6CJnxvDdZHkHW6cS+eFb8OkjnosnntZ8ut1+nIikqjIaHA+0ESlzSswZEUCqfttPJYgjiBMQ4CNKDRD+uZhSl/FpgRL6wLxxCfsX9P1KC9n+g8KDXQsb/aa8iNXP+rPaio2BnW0pQVoREXu4pKcbK8iYSPpENBahIACCfDd7k4BgeCQnCXFjVvk7XKBzfvMLh0+CFQH0t0QNY9r1NwYy3NNLgepxsN+p8Qvv8RBtRuh8iTqwFfBwebveRl78Wnre7um3n4i2yVPWVrLGHbbJe9Z/uszwQ7ZWfsnP1o/YoeR08ifiGNWvOZR+xSReu/AacbvXU=</latexit> R0 = Z 1 0 A(a)da ただし、 <latexit sha1_base64="QvFYNraTbOF3WY09zCRxI8hPGLg=">AAACeXicfVDLbhNBEBwvr2BeDhy5TGIhmSiydnnfCAmHXBBBwkkkr7F6Z3udUeaxmulFWKu98zVck1/Jt+TCrGMkkiBaGk2punp6qrJSSU9xfNaJbty8dfvOyt3uvfsPHj7qrT7e97ZyAkfCKusOM/CopMERSVJ4WDoEnSk8yI532v7Bd3ReWvOV5iVONMyMLKQACtS0t57mhQNRfxjA86ZOpaFp/C1cBc15y+XQTHv9eBgvil8HyRL02bL2pqud92luRaXRkFDg/TiJS5rU4EgKhU03rTyWII5hhuMADWj0k3phpuHPApPzwrpwDPEF+/dEDdr7uc6CUgMd+au9ltzM9L/a44qKd5NamrIiNOJiV1EpTpa34fBcOhSk5gGAcDJ8l4sjCPlQiPDSovZtslb54OYjBpcOPwXqc4kOyLqNOgU309I0wfUs3WzR/4Tw448woG43RJ5cDfg62H8xTN4MX3951d/aXoa/wp6ydTZgCXvLttgu22MjJthP9oudsNPOebQWDaKNC2nUWc48YZcqevkbmCPB+g==</latexit> A(a) R 1 0 A(a)da は世代時間のpdf この解を と⼀旦してみる (rは内的増殖率という) <latexit sha1_base64="g1gRI6Y400KhcDNHvGyOUuELeYQ=">AAAB/XicbVBNS8NAEN34WetXqkcvi0VoQUoiRb0IRS96q2A/oA1ls920SzebsDtRSyn+Eo/qRbz6Szz4b9y2OWjrg4HHezPMzPNjwTU4zre1tLyyurae2chubm3v7Nq5vbqOEkVZjUYiUk2faCa4ZDXgIFgzVoyEvmANf3A18Rv3TGkeyTsYxswLSU/ygFMCRurYuZsCFPEFHrTZY1xQGIodO++UnCnwInFTkkcpqh37q92NaBIyCVQQrVuuE4M3Igo4FWycbSeaxYQOSI+1DJUkZNobTU8f4yOjdHEQKVMS8FT9PTEiodbD0D/2Q9McEujreXsi/ue1EgjOvRGXcQJM0tmuIBEYIjyJAne5YhTE0BBCFTfnYtonilAwgWVNDu7814ukflJyT0vl23K+cpkmkkEH6BAVkIvOUAVdoyqqIYoe0DN6RW/Wk/VivVsfs9YlK53ZR39gff4AmWaTYQ==</latexit> I(t) = k exp(rt) <latexit sha1_base64="YqBVCmEG4Xltxg7eyG3luZYdW48=">AAACG3icbVBNSwMxEM36bf2qevQSLEILWnelqBfBj4vHCrYKbS2zabYNzWaXZFYsxZ/h0V/iUb2IVw/+G9N2D9r6YJjHezMk8/xYCoOu++1MTc/Mzs0vLGaWlldW17LrG1UTJZrxCotkpG99MFwKxSsoUPLbWHMIfclv/O7FwL+559qISF1jL+aNENpKBIIBWqmZ3e/W+UOc1xQL9ITWhcKmS+9sD7BHz/JQSP087kGh0IJmNucW3SHoJPFSkiMpys3sV70VsSTkCpkEY2qeG2OjDxoFk/wxU08Mj4F1oc1rlioIuWn0h4c90h2rtGgQaVsK6VD9vdGH0Jhe6O/6oR0OATtm3B6I/3m1BIPjRl+oOEGu2OitIJEUIzoIiraE5gxlzxJgWtjvUtYBDQxtnBmbgzd+9SSpHhS9w2LpqpQ7PU8TWSBbZJvkiUeOyCm5JGVSIYw8kRfyRt6dZ+fV+XA+R6NTTrqzSf7A+foBwBeeuw==</latexit> k exp(rt) = Z 1 0 A(a)k exp(r(t a))da でないといけない。両辺 で割れば (オイラー=トロカの特性⽅程式) <latexit sha1_base64="g1gRI6Y400KhcDNHvGyOUuELeYQ=">AAAB/XicbVBNS8NAEN34WetXqkcvi0VoQUoiRb0IRS96q2A/oA1ls920SzebsDtRSyn+Eo/qRbz6Szz4b9y2OWjrg4HHezPMzPNjwTU4zre1tLyyurae2chubm3v7Nq5vbqOEkVZjUYiUk2faCa4ZDXgIFgzVoyEvmANf3A18Rv3TGkeyTsYxswLSU/ygFMCRurYuZsCFPEFHrTZY1xQGIodO++UnCnwInFTkkcpqh37q92NaBIyCVQQrVuuE4M3Igo4FWycbSeaxYQOSI+1DJUkZNobTU8f4yOjdHEQKVMS8FT9PTEiodbD0D/2Q9McEujreXsi/ue1EgjOvRGXcQJM0tmuIBEYIjyJAne5YhTE0BBCFTfnYtonilAwgWVNDu7814ukflJyT0vl23K+cpkmkkEH6BAVkIvOUAVdoyqqIYoe0DN6RW/Wk/VivVsfs9YlK53ZR39gff4AmWaTYQ==</latexit> I(t) = k exp(rt) <latexit sha1_base64="J/e5A2LBdnws9TuyTGuk9tcHYis=">AAACDnicbVDLSgNBEJz1GeMr6tHLkCAkoGFXRL0IUS8eI5gHJDH0Tmbj4OzsMtMrhpC7R7/Eo3oRr/6AB//GyeOg0YKmi6puZrr8WAqDrvvlzMzOzS8sppbSyyura+uZjc2qiRLNeIVFMtJ1HwyXQvEKCpS8HmsOoS95zb89H/q1O66NiNQV9mLeCqGrRCAYoJXamaxHT2hTKGy79Nr2AHv0NA+FJr+P83saCh1oZ3Ju0R2B/iXehOTIBOV25rPZiVgScoVMgjENz42x1QeNgkk+SDcTw2Ngt9DlDUsVhNy0+qNbBnTHKh0aRNqWQjpSf270ITSmF/q7fmiHQ8AbM20Pxf+8RoLBcasvVJwgV2z8VpBIihEdZkM7QnOGsmcJMC3sdym7AQ0MbYJpm4M3ffVfUt0veofFg8uDXOlskkiKbJMsyROPHJESuSBlUiGMPJAn8kJenUfn2Xlz3sejM85kZ4v8gvPxDWZHmc8=</latexit> 1 = Z 1 0 A(a) exp( ra)da (上のただしの部分を使うと)よって <latexit sha1_base64="DDEx2FgrbA2KW0FzqNF85JdxCjA=">AAACRnicbVBNb9NAFHwOHy3hK8CRy4oIKZEgslFVuCC19MKxINJWxMF6Xj+3q67X1u4zwrL833rsH+DAH+gRuCCubNIg0ZaRVjuamae3O2mlleMw/Bb0rl2/cXNt/Vb/9p279+4PHjzcc2VtJU1lqUt7kKIjrQxNWbGmg8oSFqmm/fR4Z+HvfybrVGk+cFPRvMBDo3Ilkb2UDD6+T0LxWsRZblG2UdfGmXKVxsZxo0nEynASfvJXzs3f1PYIxz54wdoepeMs7WL6Uo2eWxxn2CWDYTgJlxBXSbQiQ1hhNxl8jbNS1gUZlhqdm0VhxfMWLSupqevHtaMK5TEe0sxTgwW5ebvsoBNPvZKJvLT+GBZL9d+JFgvnmiJ9lhY+XCAfucv2QvyfN6s5fzVvlalqJiPPd+W1FlyKRaciU5Yk68YTlFb55wp5hL4q9s33fQ/R5V9fJXsvJtHmZOPdxnDrzaqRdXgMT2AEEbyELXgLuzAFCSdwBj/gZ3AafA9+Bb/Po71gNfMILqAHfwAljbDw</latexit> R0 = 1 Z 1 0 A(a) R 1 0 A(b)db exp( ra)da
  4. R0 の統計的推測 (2) 世代時間のpdfをg(t)と書くと したがって、rとg()の形が決まれば、R0 は推定可能 • 実際の現場的には、g()は過去⽂献から持ってくることが多い • rは右図のようなepi

    curveに対して あたりをfitting • rの推定は別に最⼩⼆乗法とかでもOK 34 <latexit sha1_base64="DDEx2FgrbA2KW0FzqNF85JdxCjA=">AAACRnicbVBNb9NAFHwOHy3hK8CRy4oIKZEgslFVuCC19MKxINJWxMF6Xj+3q67X1u4zwrL833rsH+DAH+gRuCCubNIg0ZaRVjuamae3O2mlleMw/Bb0rl2/cXNt/Vb/9p279+4PHjzcc2VtJU1lqUt7kKIjrQxNWbGmg8oSFqmm/fR4Z+HvfybrVGk+cFPRvMBDo3Ilkb2UDD6+T0LxWsRZblG2UdfGmXKVxsZxo0nEynASfvJXzs3f1PYIxz54wdoepeMs7WL6Uo2eWxxn2CWDYTgJlxBXSbQiQ1hhNxl8jbNS1gUZlhqdm0VhxfMWLSupqevHtaMK5TEe0sxTgwW5ebvsoBNPvZKJvLT+GBZL9d+JFgvnmiJ9lhY+XCAfucv2QvyfN6s5fzVvlalqJiPPd+W1FlyKRaciU5Yk68YTlFb55wp5hL4q9s33fQ/R5V9fJXsvJtHmZOPdxnDrzaqRdXgMT2AEEbyELXgLuzAFCSdwBj/gZ3AafA9+Bb/Po71gNfMILqAHfwAljbDw</latexit> R0 = 1 Z 1 0 A(a) R 1 0 A(b)db exp( ra)da <latexit sha1_base64="XFoBPaOXbyk7gBRw5r4TPBJUrdQ=">AAACnXicfVBdb9MwFHXD1whf3fbIAxYVU4u2KkHb2MvExJd4YDAQXSc1JXKcm8yaY0f2DVoV5R/xa3hD8GNwuiLYhriS5aNz7vX1OUkphcUg+N7xrly9dv3G0k3/1u07d+91l1cOra4MhxHXUpujhFmQQsEIBUo4Kg2wIpEwTk5etPr4CxgrtPqEsxKmBcuVyARn6Ki4+/pjHKztRmlmGK/Dpo6Ewjj47K4MZzTv20EEp2V/w9hBahsaRdRfo7v0z8C+0wZN3O0Fw2Be9DIIF6BHFnUQL3eeRanmVQEKuWTWTsKgxGnNDAouofGjykLJ+AnLYeKgYgXYaT033NBHjklppo07Cumc/XuiZoW1syJxnQXDY3tRa8n1pPiXPKkw25nWQpUVguJnu7JKUtS0DZCmwgBHOXOAcSPcdyk/Zi4NdDGfW9S+jVpL69y8BOfSwL6j3pdgGGrzuI6YyQuhGuc6j9Zb9L9Gdvq70SHfd5GHFwO+DA6fDMPt4daHzd7e80X4S+Q+eUj6JCRPyR55Qw7IiHDylXwjP8hP74H3ynvrvTtr9TqLmVVyrrzxLwUzzZo=</latexit> R0 = 1 R 1 0 g(s) exp( rs)ds = 1 M( r) M()は統計家ならみんな ⼤好きgのモーメント⺟関数 <latexit sha1_base64="g1gRI6Y400KhcDNHvGyOUuELeYQ=">AAAB/XicbVBNS8NAEN34WetXqkcvi0VoQUoiRb0IRS96q2A/oA1ls920SzebsDtRSyn+Eo/qRbz6Szz4b9y2OWjrg4HHezPMzPNjwTU4zre1tLyyurae2chubm3v7Nq5vbqOEkVZjUYiUk2faCa4ZDXgIFgzVoyEvmANf3A18Rv3TGkeyTsYxswLSU/ygFMCRurYuZsCFPEFHrTZY1xQGIodO++UnCnwInFTkkcpqh37q92NaBIyCVQQrVuuE4M3Igo4FWycbSeaxYQOSI+1DJUkZNobTU8f4yOjdHEQKVMS8FT9PTEiodbD0D/2Q9McEujreXsi/ue1EgjOvRGXcQJM0tmuIBEYIjyJAne5YhTE0BBCFTfnYtonilAwgWVNDu7814ukflJyT0vl23K+cpkmkkEH6BAVkIvOUAVdoyqqIYoe0DN6RW/Wk/VivVsfs9YlK53ZR39gff4AmWaTYQ==</latexit> I(t) = k exp(rt)
  5. 感染性の⽐較のための逐次検定法 感染性を⽐較したい (新型インフル vs 季節性インフル) 世代時間が同じくらいとすると、結局は内的増殖率 r 同⼠の⽐較 【問題設定】 ある時間tまでの累積感染者数(C新型

    (t)、C季節 (t))に有意差あるか? But, 時間tが変わるごとに結論が出るまで検定していきたい。 Wald (1945)の逐次確率⽐検定(Sequential probability ratio test, SPRT): • 検定の最適性を満たす (from ネイマン・ピアソンの定理) • Uniformlu most powerful test (UMP): (ざっくり⾔うと)あるType 1 errorの値のもとで、検出⼒が最⼤ になる検定 • もうちょっといいのにMaxSPRTというのもある CDCなどでサーベイランスのアウトブレイク検知などで使⽤ 35 逐次検定〜
  6. (ざっくり)SPRT、逐次確率⽐検定 H0 (新型の⽅が内的増殖率が⼤きい): r新型 >r季節 H1 (季節性インフルの⽅が内的増殖率が⼤きい): r新型 <r季節 ゴール:

    H0とH1のどっちなのか“なる早”で決定したい: i.e., for the smallerst value of t Step 1: 2つの定数を「あなたが」決める γ1 > γ0 Step 2: Λt ≥γ1 になった時点でH1を採択 Λt ≤γ0 になった時点でH0を採択 γ0 ≤Λt ≤γ1 なら決定は保留する→次のtでまた検定する 当たり前だが⼤きいγ1 と⼩さいγ0 を設定すると、決定が保留され続ける代わりに、正確な決定可能 36 <latexit sha1_base64="hJbwm0ZHdgahdRNlldUS840TXCE=">AAAConicfZBdb9MwFIbd8DXKxzq45MaiIA0UVckEbDcTE3CB+BCboFulpkSOc9pZc+zMPkFUUX4UvwZxB/+Ek7ZIbEMcydKj97zH9nmzUiuPUfSjE1y6fOXqtbXr3Rs3b91e723cOfS2chKG0mrrRpnwoJWBISrUMCodiCLTcJSdvGz7R1/AeWXNJ5yXMCnEzKipkgJJSntvk3dkzkWKPGlvM3B6ypPS2Tyt1W7cfCY9nzoh6zKNN0epetQQRUsKOfJdHodbYZJb9GmvHw2iRfGLEK+gz1a1n250ntOgrAowKLXwfhxHJU5q4VBJDU03qTyUQp6IGYwJjSjAT+rF1g1/SErOp9bRMcgX6t8TtSi8nxcZOQuBx/58rxXDrPhXe1zhdGdSK1NWCEYu35pWmqPlbYo8Vw4k6jmBkE7Rd7k8FhQTUtZnHmrvRmu1p21eAW3p4D1JH0pwAq17XCfCzQplGtp6loQt/c8ovv4xEnW7FHl8PuCLcLg1iJ8Nnh486e+9WIW/xu6x+2yTxWyb7bHXbJ8NmWTf2Hf2k/0KHgRvgoPg49IadFYzd9mZCpLfN/XQPg==</latexit> ⇤t := t Y i=1 p1(Xi) p0(Xi) , t = 1, 2, . . .
  7. Reid (1956)の⽅法 Notations - : 時点tの累積患者数の確率変数(1が新型インフル、2が季節性) - は内的増殖率ri 以外は既知の分布 【ゴール】H1:

    r1 < r2 or H2: r1 > r2 Step 1: 上の仮説を改定する。Hʼ1: x1 , x2 の同時分布が Hʼ2: x1 , x2 の同時分布が Step 2: 単純出⽣過程(微⼩時間において1⼈の感染者は⾼々1⼈の感染者を⽣む)を仮定すると、 決定関数は Step 3: αをtype 1 error rateとして 37 <latexit sha1_base64="Nj1TEJwYVA9X7aFpUNFaIHvCTWM=">AAACY3icfVBdaxNBFJ2stbaptmn0TQqDQagSwm7w682gffCltIJpAkkMdyc36dD5WGbuimHJ//BV/1V/gP+js2kKbSpeGOZw7rlfJ82U9BTHl5XowcbDzUdb29Wdx09292r79TNvcyewK6yyrp+CRyUNdkmSwn7mEHSqsJdefC7zvR/ovLTmG80zHGmYGTmVAihQ3/vj5JBeNXl/3A7/uNaIW/Ey+H2QrECDreJ0vF/5OJxYkWs0JBR4P0jijEYFOJJC4aI6zD1mIC5ghoMADWj0o2K59oK/DMyET60LzxBfsrcrCtDez3UalBro3K/nSrKZ6n+lBzlNP4wKabKc0IjrWdNccbK8tIFPpENBah4ACCfDulycgwNBwaw7g8reZK3y4ZojDFc6PA7USYYOyLrXxRDcTEuzCFfPhs0S/U8IP2+EAVWrwfJk3eD74KzdSt613n590+h8Wpm/xZ6zF+yQJew967Av7JR1mWCO/WK/2Z/K32gnqkfPrqVRZVXzlN2J6OAKz+C4dw==</latexit> X1(t), X2(t) <latexit sha1_base64="L/hH7FT+TWtUJbbttQXJu121m+8=">AAACgXicfVBdaxNBFJ1sq9a02tQ++jIYhKQsYTeoLZRgsX3oixjBtIEkLLOTm3TofCwzd0vDkv/QX+Or/g3/jbPpFvohXhg4nHvuvXNOmknhMIr+1IK19WfPX2y8rG9uvXq93dh5c+ZMbjkMuJHGDlPmQAoNAxQoYZhZYCqVcJ5eHpf98yuwThj9AxcZTBSbazETnKGnksZelhQ2EcvWdSJCbNMe7beGFYXtnmfbIRW0F4fdpNGMOtGq6FMQV6BJquonO7XP46nhuQKNXDLnRnGU4aRgFgWXsKyPcwcZ45dsDiMPNVPgJsXK1JK+98yUzoz1TyNdsfcnCqacW6jUKxXDC/e4V5Jhqv7VHuU4O5gUQmc5gua3t2a5pGhoGRKdCgsc5cIDxq3w36X8glnG0Uf54FC5G42Rzrs5Ae/SwldPfcvAMjR2rxgzO1dCL73r+Tgs0f+E7PpO6FG97iOPHwf8FJx1O/GnzsfvH5pHX6rwN8hb8o60SEz2yRE5JX0yIJzckJ/kF/kdrAXtIAq6t9KgVs3skgcVHP4FwL/CNg==</latexit> pri (xi, t) = P(Xri (t) = xi), i = 1, 2 <latexit sha1_base64="1WQOQ0pEDO0R2MNAChuOSUgf2Lw=">AAACfXicfZDbbhMxEIadLYcSTmm55MYiKkpRCLsVbbmjAi64QRSJtJWyUTTrTDZWfdjasxXRKm/A03ALL8LTgDddJNoiRrL06Z/fHs+fFUp6iuOfrWjtxs1bt9fvtO/eu//gYWdj88jb0gkcCqusO8nAo5IGhyRJ4UnhEHSm8Dg7fVv3j8/ReWnNZ1oUONaQGzmTAihIk87TaY+2U4VnPFU2T6sUVDGHyc6LXvK84WQ7XU463XgQr4pfh6SBLmvqcLLRep1OrSg1GhIKvB8lcUHjChxJoXDZTkuPBYhTyHEU0IBGP65WCy35VlCmfGZdOIb4Sv37RgXa+4XOglMDzf3VXi32M/2v9qik2atxJU1REhpxMWtWKk6W1wHxqXQoSC0CgHAyfJeLOTgQFGK8NKh+m6xVPmzzDsOWDj8E6WOBDsi6ZyFMl2tplmHrPO3X9D8jfPljDNRuh8iTqwFfh6OdQbI32P30snvwpgl/nT1mT1iPJWyfHbD37JANmWBf2Tf2nf1o/Yq2on40uLBGrebOI3apov3f10/C6Q==</latexit> d(t)  log{↵2/(1 ↵1)} <latexit sha1_base64="m1K5jhgZ/bhf19q6J/dFBHTxu9g=">AAACfXicfZDdbhMxEIWdLT8l/KXlkhuLqChFIexWtOWOCrjgBlEk0laKo2jWmWys2uutPVsRrfIGPA238CI8DXjTRaItYiRLn84cezwnLbTyFMc/W9HajZu3bq/fad+9d//Bw87G5pG3pZM4lFZbd5KCR61yHJIijSeFQzCpxuP09G3dPz5H55XNP9OiwLGBLFczJYGCNOk8nfZoW2R4xoW2mah6yXMBupjDZGf7RUOJWE463XgQr4pfh6SBLmvqcLLRei2mVpYGc5IavB8lcUHjChwpqXHZFqXHAuQpZDgKmINBP65WCy35VlCmfGZdODnxlfr3jQqM9wuTBqcBmvurvVrsp+Zf7VFJs1fjSuVFSZjLi1mzUnOyvA6IT5VDSXoRAKRT4btczsGBpBDjpUH122St9mGbdxi2dPghSB8LdEDWPasEuMyofBm2zkS/pv8Z4csfY6B2O0SeXA34OhztDJK9we6nl92DN0346+wxe8J6LGH77IC9Z4dsyCT7yr6x7+xH61e0FfWjwYU1ajV3HrFLFe3/BsaVwuQ=</latexit> d(t) log{(1 ↵2)/↵1 } H2を採択 H1を採択 それ以外なら、検定を続ける <latexit sha1_base64="cLs2iVEUNYf3cskjE5j8cKeGbIQ=">AAACc3icfVDLThtBEBxvAiEOEBOO5LDCiQTIWLtWXjesJIdcIogU20i2teodt82IeaxmeiOslS98DdfwN3xI7pm1HYmX0tJI1dXVM1OVZlI4iqKbSvDk6crqs7Xn1RfrG5sva1uvus7klmOHG2nsaQoOpdDYIUESTzOLoFKJvfT8Sznv/ULrhNE/aZrhUMFEi7HgQJ5Kaq+zpLBJPNu7SOIG7c+7Vtm1fJfU6lEzmlf4EMRLUGfLOkm2KkeDkeG5Qk1cgnP9OMpoWIAlwSXOqoPcYQb8HCbY91CDQjcs5jZm4VvPjMKxsf5oCufs7Y0ClHNTlXqlAjpz92cl2UjVY+N+TuNPw0LoLCfUfPHWOJchmbCMJRwJi5zk1APgVvjvhvwMLHDy4d15qLybjJHOu/mK3qXF7546ztACGXtQDMBOlNAz73oyaJTof0K4+Cf0qFr1kcf3A34Iuq1m/KH5/se7evvzMvw1tsN22R6L2UfWZt/YCeswzi7ZFfvNrit/gp1gN3izkAaV5c42u1PB4V8+lb8T</latexit> pr1 (x1, t)pr2 (x2, t) <latexit sha1_base64="JHzZSVZ8g1xkA6skk823qmFkyJE=">AAACc3icfVDLThtBEBxvAiEOEBOO5LDCiQTIWLtWXjesJIdcIogU20i2teodt82IeaxmeiOslS98DdfwN3xI7pm1HYmX0tJI1dXVM1OVZlI4iqKbSvDk6crqs7Xn1RfrG5sva1uvus7klmOHG2nsaQoOpdDYIUESTzOLoFKJvfT8Sznv/ULrhNE/aZrhUMFEi7HgQJ5Kaq+zpLBJa7Z3kcQN2p93cdm1fJfU6lEzmlf4EMRLUGfLOkm2KkeDkeG5Qk1cgnP9OMpoWIAlwSXOqoPcYQb8HCbY91CDQjcs5jZm4VvPjMKxsf5oCufs7Y0ClHNTlXqlAjpz92cl2UjVY+N+TuNPw0LoLCfUfPHWOJchmbCMJRwJi5zk1APgVvjvhvwMLHDy4d15qLybjJHOu/mK3qXF7546ztACGXtQDMBOlNAz73oyaJTof0K4+Cf0qFr1kcf3A34Iuq1m/KH5/se7evvzMvw1tsN22R6L2UfWZt/YCeswzi7ZFfvNrit/gp1gN3izkAaV5c42u1PB4V8+o78T</latexit> pr2 (x1, t)pr1 (x2, t) <latexit sha1_base64="q7CkWI80aiNYArX32JfPwg1xQxs=">AAAClHicfVDbahRBEO2deInrbRPBF18aF2Ej2WVm8ZIHg8Eo+KJGcJPAzjD09NRMmvRl6K4Juwz7NX6Nr/rk39izWSEXsaDpU6dOdXWdrJLCYRj+7gRrN27eur1+p3v33v0HD3sbm4fO1JbDhBtp7HHGHEihYYICJRxXFpjKJBxlp/tt/egMrBNGf8N5BYlipRaF4Aw9lfZ28wFu7dLpLB17MJylkb+SWJoyzgvLeBMNY5hVg6FNI9xaXEjHPk17/XAULoNeB9EK9MkqDtKNzts4N7xWoJFL5tw0CitMGmZRcAmLblw7qBg/ZSVMPdRMgUua5Z4L+swzOS2M9UcjXbIXOxqmnJurzCsVwxN3tdaS25n6V3laY7GTNEJXNYLm57OKWlI0tPWN5sICRzn3gHEr/HcpP2HeIfTuXhrUvo3GSOe3eQ9+SwufPPWlAsvQ2OdNzGyphF74rct4u0X/E7LZX6FH3a63PLpq8HVwOB5Fr0Yvv77o771bmb9OnpCnZEAi8prskY/kgEwIJ9/JD/KT/AoeB2+C/eDDuTTorHoekUsRfP4D5r3Jvw==</latexit> d(t) = [x2(t) x1(t)] log 1 exp( r1t) 1 exp( r2t) <latexit sha1_base64="bEBy+0ErgV3JLFbMr9e+2xAa30I=">AAACs3icfZBdb9MwFIbd8DXCxzq45MaiYmpRWiWIATcTE3DBDWJIdKvUdJHjnGbW7DjYJ6hVlD/Hv+AfcAu/AKdrpX0gjmTp0XveY/u8aSmFxTD82fFu3Lx1+87WXf/e/QcPt7s7j46srgyHMddSm0nKLEhRwBgFSpiUBphKJRynZ+/b/vF3MFbo4isuS5gplhdiLjhDJyXdeLdM6li6gYwlUdNfBDig+xRO6uFGFRSbfjS8IDlhcFIvhlET0Dj2dzHO4RsNA7rYwKQfDvajpNsLR+Gq6HWI1tAj6zpMdjpv40zzSkGBXDJrp1FY4qxmBgWX0PhxZaFk/IzlMHVYMAV2Vq9iaOgzp2R0ro07BdKVenGiZsrapUqdUzE8tVd7rRik6l/taYXzN7NaFGWFUPDzt+aVpKhpGyvNhAGOcumAcSPcdyk/ZYZxdOFfeqi9G7WW1m3zAdyWBj456XMJhqE2z+uYmVyJonFb53HQ0v+MbLExOvJ9F3l0NeDrcPRiFL0a7X152Tt4tw5/izwhT0mfROQ1OSAfySEZE05+kF/kN/nj7XlTL/Wyc6vXWc88JpfKU38Bc1bUFA==</latexit> p 1 (x, t) = e it(1 e t)x 1, t 0, x 0, X(0) = 1 単純出⽣過程