Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
感染症の数理モデル11
Search
Daisuke Yoneoka
February 20, 2025
Research
0
25
感染症の数理モデル11
Daisuke Yoneoka
February 20, 2025
Tweet
Share
More Decks by Daisuke Yoneoka
See All by Daisuke Yoneoka
感染症の数理セミナー_10_.pdf
kingqwert
0
48
感染症の数理モデル9
kingqwert
0
48
感染症の数理モデル8
kingqwert
0
48
感染症の数理モデル7
kingqwert
0
62
感染症の数理モデル6
kingqwert
0
72
感染症の数理モデル5
kingqwert
0
74
感染症の数理モデル4
kingqwert
0
120
感染症の数理モデル3
kingqwert
0
130
感染症の数理モデル2
kingqwert
0
140
Other Decks in Research
See All in Research
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
990
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
320
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1.3k
Weekly AI Agents News! 10月号 プロダクト/ニュースのアーカイブ
masatoto
1
190
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
1.5k
2038年問題が思ったよりヤバい。検出ツールを作って脅威性評価してみた論文 | Kansai Open Forum 2024
ran350
8
3.8k
Composed image retrieval for remote sensing
satai
2
240
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
440
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
300
国際会議ACL2024参加報告
chemical_tree
1
430
ダイナミックプライシング とその実例
skmr2348
3
590
Evaluating Tool-Augmented Agents in Remote Sensing Platforms
satai
2
150
Featured
See All Featured
Building Your Own Lightsaber
phodgson
104
6.2k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
30
4.6k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Six Lessons from altMBA
skipperchong
27
3.6k
Building Adaptive Systems
keathley
40
2.4k
Adopting Sorbet at Scale
ufuk
74
9.2k
Facilitating Awesome Meetings
lara
52
6.2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Navigating Team Friction
lara
183
15k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Transcript
感染症の数理 セミナー(11) Jan 17, 2025 @NIID 国立感染症研究所 第12室長 米岡 大輔
目次 1. 感染症のコンパートメントモデル 2. 基本再生産数 3. 最終流行規模 4. R実装 5.
人口の異質性とSIR 6. 再生産方程式とエボラ vs インフル 7. R 0 の推定方法(流行初期) 8. 内的増殖率の検定 9. Effective distance 10. 分岐過程 (Branching process) 11. 大規模流行確率と水際対策 12. Backcalculation 13. 致死率の計算 14. (シンプルな)ワクチン接種の自然史と流行条件 本書の内容をカバーします。 具体的なコードなどは右の本 詳細なプログラムなどは https://github.com/objornstad/epimdr/tree/ master/rcode (結構間違ってる。。。) 2/48
はじめに 本セミナーシリーズは数理重めです。 簡単な微分/積分、線形代数が出てきます。 なるべく平易に解説しますが、完全に数学アレルギーの方はここ で終わられることをおすすめします。 セミナー終了時にはある程度次のパンデミックに向けて、 (ある程度) 数理モデリングができるようになることを目標としてます。 自由参加なので、もし無理そうならお気軽に休んでください。 3/20
ワクチンの自然史(麻疹) • 麻疹が定常(or 平衡)状態にある場合 ≒ 時間と感染者数が独立 • M歳まで母親からの移行抗体、V年でワクチン接種、A年で自然感染、L歳まで生きる • Aは全く感染せずに経過、Bはワクチン接種群(割合p)、Cは自然感染群
70
パラメタライズ • m : 母親からの移行抗体によって免疫を保持する期間(6 か月) • s : 母体からの免疫が消失してから死亡するまでの感受性を有する
期間 • sv :ワクチン接種までの感受性期間 • v :ワクチン接種後から死亡するまでの免疫保持期間 • si : 自然感染までの感受性期間, • l : 非感染性期間(感染した後に他者に感染させる能力を持たない 期間) • i : 感染性期間(他者に感染させる能力を有する期間) • r : 自然感染から回復してから死亡するまでの免疫保持期間 71 t si は M から A までの時間であることに注意
定常状態においては • ワクチン接種(割合p)による集団的効果を考える • 定常状態は2つ。まずは自明な感染者が0の場合 • 麻疹患者が一定数いる定常状態。 • 仮定1: 左図Aはほとんど0とする。
• 仮定2: 自然感染をする人はワクチン接種をしない 72 ワクチン接種群 (左図B) ワクチン非接種群 (左図A) Memo: 一瞬 t sv /Lは2つ目の式にいらないの か?と思うが、仮定2よりそういう人はいない
流行条件の導出 • ランダムな接触を仮定すると、一人の感染者あたり 人の感染者 → 定常状態なので 、もっと言うと も も定数 •
自然感染の平均年齢は(A 0 はワクチン非接種群の自然感染の平均年齢) • 感染症を根絶したいなら以下の状態を目指す(前のスライドで、感染者0の定常状態) 73 以下に代入して 定数であることが確認できる ワクチン接種率pとは無関係! R0は変えられないとすると、 この右辺の値を小さくしていく ことが感染症の根絶につながる つまり、オレンジが青より小さければ良い → これが目指すべきワクチン接種率 面白い式:ワクチン接種割合 が高くなるにつれ, 自然感染 を経験する平均年齢が上昇す る傾向にある
免疫を有する者がいる人口への流入 • 現実に平衡状態にある感染症なんてないよね。 • 多くは「他地域からの流入」と「地域内根絶」を繰り返して流行の波ができている • 流行開始前の免疫を有する者の割合を • 流行が繰り返される主要因は、感受性を持つ割合 が平衡状態の感受性割合
より少し大きくなること • 最終規模(一つの流行を通じて観察される感染者の割合)を • また、(一人が)流行中に感染する確率は (第4回プレゼン(次のスライド再掲)を参照) • 最終規模は (普通よりf s0 だけ小さくなる) 74 fs0 : 一つの流行が終息しても感受性を持 ったままの割合 これを2次のテイラー展開 平衡状態では より この意味:前の感受性宿主の割合f s0 が、平衡状態の感受性宿主 の割合f s を1%上回る度に、短期的流行(再流行)を通じて感染 する者の割合が2%増える ひとたび流行が下火になっても、感受性を有するものがどれ くらい人口内にいるかを確認することの重要性を示唆 重要な示唆
最終流行規模 (Final epidemic size) もうちょっと現実的に人口あたりで考える SIRには2つの均衡点 (s, i, r) =
(1, 0 , 0)と(s*, 0, r*) 75/20 t→∞としたときに感染者は0人になり、 s* (= s(∞)): 何%が感染を逃れたか r* (= r(∞)): 何%が感染したか 新しい基本再生産数 r*にてつい て解く (解析的には解けないので)数値計算 R0 が大きいとき はr*≒1なので R 0 だけから、最終的な流行規模が見積もれる! 求め方:上の3番目を1番目に代入し て積分するだけ