Upgrade to Pro — share decks privately, control downloads, hide ads and more …

感染症の数理モデル7

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

 感染症の数理モデル7

Avatar for Daisuke Yoneoka

Daisuke Yoneoka

August 24, 2024
Tweet

More Decks by Daisuke Yoneoka

Other Decks in Research

Transcript

  1. ⽬次 1. 感染症のコンパートメントモデル 2. 基本再⽣産数 3. 最終流⾏規模 4. R実装 5.

    ⼈⼝の異質性とSIR 6. 再⽣産⽅程式とエボラ vs インフル 7. R0 の推定⽅法(流⾏初期) 8. 内的増殖率の検定 9. Effective distance 10. 分岐過程 (Branching process) 11. ⼤規模流⾏確率と⽔際対策 本書の内容をカバーします。 具体的なコードなどは右の本 詳細なプログラムなどは https://github.com/objornstad/epimdr/tree/ master/rcode (結構間違ってる。。。) 2/48
  2. 分岐過程 • Galton-Watson processの定式化が⼀番有名 を⾮負の整数値をとるiidな確率変数: (ただし ) 46 <latexit sha1_base64="GL0Z3QrIIO4C2/WhI0xbfQk3Ms4=">AAACeHicfVBNbxMxFHQWCiUUSOHIxRChtjSKdiu+LhUVcOCCKBJpo2bT1VvnJbXqj5X9FhGt9syv4Qq/hb/CCW+aSrRFPMnSaGbs55m8UNJTHP9qRdeur9y4uXqrfXvtzt17nfX7B96WTuBAWGXdMAePShockCSFw8Ih6FzhYX76ttEPv6Dz0prPNC9wrGFm5FQKoEBlnUdHWUXbSc13eepLnVVyN6mPq6OM6mFQerLOOt24Hy+GXwXJEnTZcvaz9dbrdGJFqdGQUOD9KIkLGlfgSAqFdTstPRYgTmGGowANaPTjapGl5k8CM+FT68IxxBfs3zcq0N7PdR6cGujEX9Yaspfrf8mjkqavxpU0RUloxNmuaak4Wd50wyfSoSA1DwCEk+G7XJyAA0GhwQuLmrfJWuVDmncYUjr8EKiPBTog655WKbiZlqYOqWdpr0H/M8LXc2NA7XaoPLlc8FVwsNNPXvSff3rW3XuzLH+VPWSP2SZL2Eu2x96zfTZggn1j39kP9rP1O+LRRrR1Zo1ayzsP2IWJdv4ALL/B1w==</latexit>

    Zt+1 = Zt X i=1 Xt,i <latexit sha1_base64="dnBFeKrJ/oDLZmTXmiBMLy/SMRU=">AAACXHicfVDbSiNBEO3Meo33FXzxZTAIIiHMiO7um+L64IuoYEwgCaGmU0ma9GXorlkMQz5iX3e/bF/2W+yJEbxhQcPh1KmuOidJpXAURf9KwZe5+YXFpeXyyura+sbm1td7ZzLLsc6NNLaZgEMpNNZJkMRmahFUIrGRjH4W/cYvtE4YfUfjFDsKBlr0BQfyVKPZzakqJt3NSlSLphW+B/EMVNisbrpbpdN2z/BMoSYuwblWHKXUycGS4BIn5XbmMAU+ggG2PNSg0HXy6b2TcN8zvbBvrH+awin7ciIH5dxYJV6pgIbuba8gq4n6qN3KqP+jkwudZoSaP+3qZzIkExb+w56wyEmOPQBuhT835EOwwMmn9GpR8TcZI513c4HepcUrT12naIGMPczbYAdK6Il3PWhXC/SZEB6ehR6Vyz7y+G3A78H9US3+Vju5Pa6cnc/CX2K7bI8dsJh9Z2fskt2wOuNsxH6zP+xv6X8wF6wEa0/SoDSb2WavKth5BOiIt0I=</latexit> Xt,i <latexit sha1_base64="itvO7QQ8osiOx0s2uq1sUfmGpdI=">AAACZ3icfVBdSxtBFJ2sbdXYNlFBCn3ZNhRsCWFXWu2LKNUHX0pTaDSQhOXu5CYOzscyc1calvwTX/U/+RP8F87GCH6UHhg4nHvu3HtPmknhKIquK8HCi5evFpeWqyuv37yt1VfXjp3JLccON9LYbgoOpdDYIUESu5lFUKnEk/TsoKyfnKN1wug/NMlwoGCsxUhwIC8l9Xp7s5sU1BTTXfV5N0tUUm9ErWiG8DmJ56TB5mgnq5W9/tDwXKEmLsG5XhxlNCjAkuASp9V+7jADfgZj7HmqQaEbFLPVp+EnrwzDkbH+aQpn6sOOApRzE5V6pwI6dU9rpdhM1b/KvZxG3weF0FlOqPndrFEuQzJhGUU4FBY5yYknwK3w64b8FCxw8oE9GlT+TcZI5685RH+lxZ9e+pWhBTL2S9EHO1ZCT/3V436zZP8zwt97o2fVqo88fhrwc3K81Yq3W99+f23s/5iHv8Tes49sk8Vsh+2zI9ZmHcbZObtgl+yqchPUgo3g3Z01qMx71tkjBB9uAUAVupE=</latexit> P(Xt,i = m) = pm Zt は世代tの感染者数 Xt,i は世代tの個体iが感染させた数 N世代後に感染者数はどうなるか?が⽬的 • その定義よりZはマルコフ連鎖(もっと⾔うと普通は状態0を吸 収状態とする吸収的マルコフ連鎖を仮定) • 世代tの感染者数Zt の期待値は、ある個体がうつす 感染数の期待値から <latexit sha1_base64="/QJrU3OHsX386wyBoDoLP9nW310=">AAACZ3icfVBdaxNBFJ2s1dZUbapQhL5MDYJoCLui1gepRX3wRVrBtIUkLHcnN+nQ+WLmbmlY8k981f/Un9B/4WwawbbSC8Mczj336xROyUBpet5I7izdvbe8cr+5+uDho7XW+uODYEsvsCessv6ogIBKGuyRJIVHziPoQuFhcfK5zh+eog/Smh80dTjUMDFyLAVQpPJWy+XpTtrh8Xvl8uxDlrfaaTedB78JsgVos0Xs5+uNj4ORFaVGQ0JBCP0sdTSswJMUCmfNQRnQgTiBCfYjNKAxDKv56jP+PDIjPrY+PkN8zv5bUYEOYaqLqNRAx+F6riY7hf5ful/S+P2wksaVhEZczhqXipPltRV8JD0KUtMIQHgZ1+XiGDwIioZdGVT3JmtViNd8wXilx2+R2nPogax/WQ3AT7Q0s3j1ZNCp0W1COPsrjKjZjJZn1w2+CQ5ed7N33bff37R3Py3MX2Gb7Bl7wTK2zXbZV7bPekywU/aT/WK/GxfJWrKRPL2UJo1FzRN2JZKtP/HYuWU=</latexit> p0 > 0, p0 + p1 < 1 <latexit sha1_base64="6p2Tnm+ggx9c59MScxarcZT1nDM=">AAACbHicfVDbahRBEO0dL0nWSzYan4LQuCgiyzITvL2IISbgixjBTRZnx6Gmt3bTpC9Dd424DPsxvpov8if8hvRsVjCJeKDhcOpUV9UpSiU9xfGvVnTt+o2bK6tr7Vu379xd72zcO/S2cgIHwirrhgV4VNLggCQpHJYOQRcKj4qTd0396Bs6L635TLMSMw1TIydSAAUp7zzYT7/klPE3fD8d5jX15Dz7SnmnG/fjBfhVkixJly1xkG+03o7GVlQaDQkF3qdJXFJWgyMpFM7bo8pjCeIEppgGakCjz+rF/nP+OChjPrEuPEN8of7dUYP2fqaL4NRAx/5yrRF7hf5XOa1o8jqrpSkrQiPOZ00qxcnyJg8+lg4FqVkgIJwM63JxDA4EhdQuDGr+JmuVD9fsYbjS4YcgfSzRAVn3rB6Bm2pp5uHq6ajXsP8Z4fsfY2Dtdog8uRzwVXK43U9e9l98et7d2V2Gv8q22CP2lCXsFdth79kBGzDBavaD/WSnrd/RZrQVPTy3Rq1lz312AdGTM2P8vHU=</latexit> E[Zt] = E[Xt,i]t
  3. ⼀⼈の感染者が⼊ってきたときの伝播リスク ⼀⼈が平均R0 ⼈にうつすとすると感染者数は 第t-1世代時の総感染者数は R0 <1なる感染症において、総感染者数の情報を得ることが感染性を知 るうえでとても⼤事 でも、Spatially heterogeneousなpopulationで これやると推定値にバイアスが⼊る

    (Birello et al. 2024) 47 <latexit sha1_base64="DnbtaWbc3n81nGFLZ0YCTE/7GZM=">AAACbnicfVBdSxtBFJ2s9StajRb0oRQXQ0FKCLt+vynqQ19KVYwKSRruTm7i4HwsM3elYcmv6Wv7g/ov+hM6GyP4hRdmOJx77tw5J0mlcBRFf0vBxLvJqemZ2fLc/PuFxcrS8qUzmeXY4EYae52AQyk0NkiQxOvUIqhE4lVye1z0r+7QOmH0BQ1SbCvoa9ETHMhTncpqXDvvRMX5sTm6t2qtriHXqVSjejSq8CWIx6DKxnXaWSod+EGeKdTEJTjXjKOU2jlYElzisNzKHKbAb6GPTQ81KHTtfORgGH72TDfsGeuPpnDEPp7IQTk3UIlXKqAb97xXkLVEvdZuZtTbb+dCpxmh5ve7epkMyYRFImFXWOQkBx4At8J/N+Q3YIGTz+3JouJtMkY67+YEvUuL3zz1PUULZOyXvAW2r4Qeetf9Vq1Abwnh54PQo3LZRx4/D/gluNysx7v1nbPt6uHROPwZ9pGtsw0Wsz12yL6yU9ZgnA3ZL/ab/Sn9C1aCT8HavTQojWc+sCcVbPwHzl28Fg==</latexit> 1, R0, R2 0 , R3 0 , . . . <latexit sha1_base64="I/0wJq8xSxF3i5ymZMMtAvaZW3k=">AAACj3icfZBNTxsxEIadpS00/SChRy5Wo0pVBdEu4usCRJRDOVSlVQNI2bDyOrPBwh+LPYsarfav9Nf02t75N/UmqVSg6kiWH70z4/G8aS6FwzC8bQQLjx4/WVx62nz2/MXL5VZ75dSZwnLocyONPU+ZAyk09FGghPPcAlOphLP06n2dP7sB64TRX3GSw1CxsRaZ4Ay9lLR2jxMdw3UhbmjsCpWUuBdWF6Vej6ovSXiBdI/Go8wyXkbrtaCrGVRJqxN2w2nQhxDNoUPmcZK0GwfxyPBCgUYumXODKMxxWDKLgkuomnHhIGf8io1h4FEzBW5YTles6BuvjGhmrD8a6VT9u6NkyrmJSn2lYnjp7udqcS1V/0oPCsx2h6XQeYGg+WxWVkiKhtaW0ZGwwFFOPDBuhf8u5ZfMe4Le2DuD6rfRGOn8Nkfgt7Tw0UufcrAMjX1XxsyOlfAm+jteq+l/hezbn0JPzaa3PLpv8EM43ehG292tz5ud3uHc/CWySl6TtyQiO6RHPpAT0iecfCc/yE/yK2gHO8F+0JuVBo15zytyJ4Lj32FcyTM=</latexit> In ⌘ n 1 X t=0 Rt 0 = 1 Rn 0 1 R0 <latexit sha1_base64="qrynYPzU6iu7RXDTR3fx8npLUqI=">AAACdHicfVBNaxRBEO0dv+L6kY0eVWhcAiJxmZFEvRnUgx7EKG4S2FmGmt6aTZP+ortGsgxz8td41V/jH/Fsz2YFk4gFDY9Xr6r6vdIpGShNf/aSS5evXL22dr1/4+at2+uDjTv7wdZe4FhYZf1hCQGVNDgmSQoPnUfQpcKD8vh11z/4gj5Iaz7TwuFUw9zISgqgSBWDB5+KlOfgnLcnPONP8lnlQTRZ27wrTFsMhukoXRa/CLIVGLJV7RUbvZf5zIpaoyGhIIRJljqaNuBJCoVtP68DOhDHMMdJhAY0hmmz9NHyzcjMeGV9fIb4kv17ogEdwkKXUamBjsL5Xkdulfpf7UlN1YtpI42rCY04vVXVipPlXS58Jj0KUosIQHgZv8vFEcQsKKZ35lC3m6xVIbp5g9Glx/eR+uDQA1n/uMnBz7U0bXQ9z7c69D8hnPwRRtTvx8iz8wFfBPtPR9mz0c7H7eHuq1X4a+wee8gesYw9Z7vsLdtjYybYV/aNfWc/er+S+8kw2TyVJr3VzF12ppLRb54Fv78=</latexit> R0 ⇡ 1 1 In 今、MERSではR0 は⼩さ いので、R0 nはめっちゃ ⼩さいはず
  4. 伝播リスク (Cont.) 今、1感染者だけが輸⼊されたとする 最終規模は ⼀⼈の⼈が何⼈にうつすかの確率分布 (offspring dist)を負の⼆項分布 (Poisson-Gamma mixture:ポワソン分布の平均がガンマ分布に従う場合のMarginalが負の⼆項) メリット:⼤きい分散(∝1/k,つまりスーパスプレッダー)が表現可能

    最終規模の分布は以下 (Nishiura et al. (2012)) 48 <latexit sha1_base64="pm1TwQ0noTY5pZ5jkhIVALzNKM8=">AAACx3icfVFdb9MwFHUCG6N8dfDIi6FCaumoEsTXy8QESMADoiC6VWpKZLtOas2OI/tmShXlgT+JxH/hAafNxD4QV7J1fO65vr7HNJfCQhD88vwrV7e2r+1c79y4eev2ne7u3UOrC8P4hGmpzZQSy6XI+AQESD7NDSeKSn5Ej982+aMTbqzQ2TdY5XyuSJqJRDACjoq7+bg/jSuo98sB3sfRIjGEVdF7ohTp02E5qKvywelxUEeSJ9BvVV/joG62Ia0jI9IlDL6XG0E4PCv5m66e0Dru9oJRsA58GYQt6KE2xvGu9zpaaFYongGTxNpZGOQwr4gBwSSvO1FheU7YMUn5zMGMKG7n1dqaGj9yzAIn2riVAV6zZysqoqxdKeqUisDSXsw15B5V/0rPCkhezSuR5QXwjG16JYXEoHFjNV4IwxnIlQOEGeGei9mSOF/Afci5Rs3doLW0bpp33E1p+CdHfc65IaDN4yoiJlUiq93UabTXoP8JSXkqdKjTcZaHFw2+DA6fjsIXo+dfnvUO3rTm76D76CHqoxC9RAfoAxqjCWLoJ/rtbXnb/kdf+yd+uZH6XltzD50L/8cfEtTeHw==</latexit> P(Xt = x) = (b + x) x! (b) ✓ R0 R0 + b ◆x ✓ 1 + R0 b ◆ b <latexit sha1_base64="T/R4CEK8s0u5Y3UnW1hiAjHE71Q=">AAAC33icfVFdb9MwFHUyPkb56oA3BDJUSB3bqmQaHy8VE/DAC6Igug01XWQ7TurNiSPbQUSWn+EJ8cpP40/wG3DaTKIr4kqWjs4519f3GJecKR0Evzx/7cLFS5fXr3SuXrt+42Z349aBEpUkdEwEF/III0U5K+hYM83pUSkpyjGnh/j0VaMffqZSMVF81HVJpznKCpYygrSj4u63Uf/TsN6EQxglqUTERKUUSWxOhoE9NvXOro04TXU/mosn1mC7VUeSZTO9aU394ExeNGNrPsTBFrat49jgetnh5FVTvRPauNsLBsG84CoIW9ADbY3iDe9FlAhS5bTQhCOlJmFQ6qlBUjPCqe1ElaIlIqcooxMHC5RTNTXzyCx85JgEpkK6U2g4Z//uMChXqs6xc+ZIz9R5rSG3cf4veVLp9PnUsKKsNC3IYlZacagFbL4AJkxSonntACKSuedCMkMuHe0+amlQc7cWgiu3zWvqtpT0raPelVQiLeRjEyGZ5aywbuss2m7Q/4zoy5nRoU7HRR6eD3gVHOwOwqeDJ+/3evsv2/DXwV3wEPRBCJ6BffAGjMAYEPDbu+Pd8+77yP/qf/d/LKy+1/bcBkvl//wDnYjojg==</latexit> P(Y = y) = Qy 2 j=0 j b + y y! ✓ b R0 + b ◆by ✓ R0b R0 + b ◆y 1 <latexit sha1_base64="EQojc5Q800JgptYSdGmloPbTJsM=">AAACcHicfVDbahRBEO0do8aNl42+KD7YcREkhGUmRJOXYFAf8iImkE2iO+tQ01uzadKXobtGXIbFr/FVv8ffyBekZ7OCScSChsOpU1V9Tl4q6SmOf7eiGws3b91evNNeunvv/oPO8sNDbysnsC+ssu44B49KGuyTJIXHpUPQucKj/PRd0z/6is5Law5oUuJQw9jIQgqgQGWdJ5/4Nk99pbOatuPpl1Sagib8c0ZZpxv34lnx6yCZgy6b11623HqTjqyoNBoSCrwfJHFJwxocSaFw2k4rjyWIUxjjIEADGv2wnnmY8heBGfHCuvAM8Rn790QN2vuJzoNSA534q72GXMv1v9qDioqtYS1NWREacXGrqBQny5tM+Eg6FKQmAYBwMnyXixNwICgkd+lQs5usVT64eY/BpcMPgfpYogOybrVOwY21NNPgepyuNeh/Qvj2RxhQux0iT64GfB0crveS171X+xvdnbfz8BfZU/acvWQJ22Q7bJftsT4T7Dv7wX6yX62z6HH0LFq5kEat+cwjdqmi1XOIK75f</latexit> Y = 1 X t=0 Zt
  5. 使い⽅ データが揃い、負の⼆項分布のパラメータが(最尤)推定できると Q1. 例えば、1例輸⼊されたときに、⼆次感染の発⽣確率は? Q2. ⼆次感染で終わる(絶滅)確率は? ( と書く) Q3. 総感染者数が8⼈以上になる確率は?

    49 <latexit sha1_base64="tmBDkU20ZGE8b/aXy0bJusbL1/c=">AAACYXicfVDLahtBEBytncRWXrJ99GWwCDjBiN2Q18XYJDnkEqxAZAu0QvSOWvLgeTHTGyIW/Yav9m/lnB/JrCyDX6RgoKiunu6uwikZKE3/NJKV1UePn6ytN58+e/7iZWtj8zjY0gvsCaus7xcQUEmDPZKksO88gi4UnhRnX+r6yS/0QVrzk2YOhxqmRk6kAIpS3t3t7+vXfJ+7kR612mknXYDfJ9mStNkS3dFG4yAfW1FqNCQUhDDIUkfDCjxJoXDezMuADsQZTHEQqQGNYVgtlp7zV1EZ84n18RniC/VmRwU6hJkuolMDnYa7tVrcK/RD5UFJk0/DShpXEhpxNWtSKk6W1yHwsfQoSM0iAeFlXJeLU/AgKEZ1a1D9N1mrQrzmK8YrPX6P0pFDD2T9myoHP9XSzOPV03yvZv8zwu9rY2TNZow8uxvwfXL8tpN96Lz/8a59+HkZ/hrbZjtsl2XsIztk31iX9Zhgjp2zC3bZ+JusJ61k88qaNJY9W+wWku1/68i4GA==</latexit> P(X = m) = pm 統計家向け: ここがXの確率⺟関数(PGF) の形になっていることに気づこう <latexit sha1_base64="zdM3ub26NHPLf88BSULhbww9BNg=">AAACgHicfVDbahRBEO0dL4nrbWMefWlchF0J64wkUQKLwQv6IkZwc2Fndujprdk06cvQXSMOw3yDX+Orfod/Y89mBZOIBQ2HU6eq+pyskMJhGP7qBNeu37i5tn6re/vO3Xv3exsPDp0pLYcJN9LY44w5kELDBAVKOC4sMJVJOMrOXrf9oy9gnTD6M1YFJIottMgFZ+iptDd8l54M3HD8dupm9UmTjGNXqrSuxmEzi4XOsaLFoBq6WZX2+uEoXBa9CqIV6JNVHaQbnZfx3PBSgUYumXPTKCwwqZlFwSU03bh0UDB+xhYw9VAzBS6pl54a+tgzc5ob659GumT/nqiZcq5SmVcqhqfucq8ltzL1r/a0xPxFUgtdlAian9/KS0nR0DYjOhcWOMrKA8at8N+l/JRZxtEneeFQuxuNkc67eQPepYUPnvpYgGVo7JM6ZnahhG6860W81aL/CdnXP0KPul0feXQ54Kvg8Nko2h3tfNru779ahb9OHpJHZEAi8pzsk/fkgEwIJ9/Id/KD/AyCYBA8DaJzadBZzWySCxXs/QbpoMPi</latexit> GY (s) = E[sY ] = 1 X y=0 p(y)sy <latexit sha1_base64="pm1TwQ0noTY5pZ5jkhIVALzNKM8=">AAACx3icfVFdb9MwFHUCG6N8dfDIi6FCaumoEsTXy8QESMADoiC6VWpKZLtOas2OI/tmShXlgT+JxH/hAafNxD4QV7J1fO65vr7HNJfCQhD88vwrV7e2r+1c79y4eev2ne7u3UOrC8P4hGmpzZQSy6XI+AQESD7NDSeKSn5Ej982+aMTbqzQ2TdY5XyuSJqJRDACjoq7+bg/jSuo98sB3sfRIjGEVdF7ohTp02E5qKvywelxUEeSJ9BvVV/joG62Ia0jI9IlDL6XG0E4PCv5m66e0Dru9oJRsA58GYQt6KE2xvGu9zpaaFYongGTxNpZGOQwr4gBwSSvO1FheU7YMUn5zMGMKG7n1dqaGj9yzAIn2riVAV6zZysqoqxdKeqUisDSXsw15B5V/0rPCkhezSuR5QXwjG16JYXEoHFjNV4IwxnIlQOEGeGei9mSOF/Afci5Rs3doLW0bpp33E1p+CdHfc65IaDN4yoiJlUiq93UabTXoP8JSXkqdKjTcZaHFw2+DA6fjsIXo+dfnvUO3rTm76D76CHqoxC9RAfoAxqjCWLoJ/rtbXnb/kdf+yd+uZH6XltzD50L/8cfEtTeHw==</latexit> P(Xt = x) = (b + x) x! (b) ✓ R0 R0 + b ◆x ✓ 1 + R0 b ◆ b <latexit sha1_base64="wE/DP7Md1drzpMZLwfps7BG5Hng=">AAADEHicfVHLbhMxFPUMrxIeTWHJAkMESmkTzVRAu4moeEhsoAGRtihORh7HM3HjGQ+2BzGy/BN8DawQW/6Av8F5VCIJ4kqWjs4519f3OC44UzoIfnv+hYuXLl/ZuFq7dv3Gzc361q1jJUpJaI8ILuRpjBXlLKc9zTSnp4WkOIs5PYknL6b6yWcqFRP5B10VdJDhNGcJI1g7Kqp/7zY/opR+ggfb8GEHhi2kyiwyk05oh/vQiR2+DRGCNSeuqGiUSEwMKqQYReasE9ihqVp7FnGa6CaaiWfWxHanQpKlY71tTXXvXJ43x9a8j4Kd2C4cQxNXyw4nr5uqVmijeiNoB7OC6yBcgAZYVDfa8p6hkSBlRnNNOFaqHwaFHhgsNSOc2hoqFS0wmeCU9h3McUbVwMwytvCBY0YwEdKdXMMZ+3eHwZlSVRY7Z4b1WK1qU3I3zv4l90udHAwMy4tS05zMZyUlh1rA6Z/BEZOUaF45gIlk7rmQjLFLR7ufXRo0vVsLwZXb5iV1W0r6xlFHBZVYC/nIICzTjOXWbZ2i3Sn6nxF/OTc6VKu5yMPVgNfB8V47fNp+8u5x4/D5IvwNcAfcB00Qgn1wCF6DLugB4t31XnlvvSP/q//N/+H/nFt9b9FzGyyV/+sP4r336g==</latexit> P(Y 8) = 1 7 X k=1 P(Y = l) = 1 7 X k=1 Qy 2 j=0 j b + y y! ✓ b R0 + b ◆by ✓ R0b R0 + b ◆y 1 <latexit sha1_base64="+6WHC/trHMFVEDbf/7IJsjth4R8=">AAAC8XicfVFdb9MwFHXC1whfHTzyYlExdagqzsQGLxET8MALokh0q1a3keM6qRU7jmwHUYX8EHhCvPKL+Dc4bSexreJKto7OPcfX996kFNxYhP54/rXrN27e2rkd3Ll77/6Dzu7DE6MqTdmIKqH0OCGGCV6wkeVWsHGpGZGJYKdJ/rbNn35h2nBVfLbLkk0lyQqeckqso+LOj2HvLD6I0LdxjKJwH+5FEJtKxnUehc0M8yK1S7jSQCc6i0MY5f21tmXDKD93QoyDrW4sWGpxPeyNI7SPNc8WFjezvIxzuE1exmiWuzuPO100QKuAV0G4AV2wiWG8673Gc0UryQpLBTFmEqLSTmuiLaeCNQGuDCsJzUnGJg4WRDIzrVdDbOBTx8xhqrQ7hYUr9l9HTaQxS5k4pSR2YS7nWrKfyG3pSWXTV9OaF2VlWUHXtdJKQKtguxQ455pRK5YOEKq5+y6kC6IJtW51Fwq1b1ulhHHdvGOuS80+OOpjyTSxSj+rMdGZ5EXjus5wv0X/E5Kv50KHgsCNPLw84Kvg5GAQHg0OP73oHr/ZDH8HPAZPQA+E4CU4Bu/BEIwA9YC35z33kG/87/5P/9da6nsbzyNwIfzffwHVLOck</latexit> P(Z2 = 0|X0 = 1) = 1 X k=1 P(Z2 = 0|Z1 = k, X0 = 1)P(Z1 = k|X0 = 1) = 1 X k=1 {P(X = 0)}k pk = 1 X k=1 pk 0 pk <latexit sha1_base64="+XbQA5R3whGRkSGQ+iOxrL/sAjc=">AAACvHicfVFdb9MwFHUzPkb46sYjLxZVpxbWKC6MwcPGBDzwgiiIbpXqLnIcJ7Vqx5HtTKui/EJ+AT+DV3jB6YrENsSVLJ177rm+vsdxIbixYfi95W3cuHnr9uYd/+69+w8etre2j40qNWVjqoTSk5gYJnjOxpZbwSaFZkTGgp3Ei3dN/eSMacNV/tUuCzaTJMt5yimxjorabNSbRBWqD8M+3DmAaAAbAh24tMmwYKntoWc4STWh1ZcorKtFjTXP5rZ/Wg3iGmMf7mBSFFqdw+Ew2MddiGEPvQ6ewwEc7gUId/tRuxMG4SrgdYDWoAPWMYq2Wm9womgpWW6pIMZMUVjYWUW05VSw2selYQWhC5KxqYM5kczMqpUfNew6JoGp0u7kFq7YvzsqIo1ZytgpJbFzc7XWkLux/Fd5Wtr01azieVFaltOLWWkpoFWw8RcmXDNqxdIBQjV3z4V0Tpx51v3CpUHN3VYpYdw275nbUrOPjvpUME2s0k8rTHQmeV67rTO826D/Ccn5H6FDvu8sR1cNvg6OhwF6Gex9ftE5ers2fxM8Bk9ADyCwD47ABzACY0DBN/AD/AS/vEMv8RaevJB6rXXPI3ApvLPfuGjTyA==</latexit> P(X1 > 0) = 1 P(X1 = 0) = 1 ✓ 1 + R0 k ◆ b ⇡ 22.7% (19.3 25.1%)
  6. ⼤規模な流⾏が起こらない確率 (⼀⼈から出発した集団の)絶滅確率(⼤規模な流⾏が起こらない確率)をqとすると収束定理より COVID-19の場合,R=1.6, b = 0.1とすると,q = 0.9226くらい つまり,⼤規模流⾏が起こる確率は1-0.9226 =

    7.7%くらい. これは1⼈の感染者が⼊った場合.もしn(=10)⼈の感染者が⼊国したら? qnが絶滅確率になる(i.e., ⼤規模流⾏が起こる確率は,1- qn) ちなみに q =0.5533くらいなので,⼤規模流⾏が起こる確率は46.7%くらい 50 <latexit sha1_base64="dRL7+hGzi5v/Q9PRWYPhD5GVXiw=">AAACdHicfVBdSxtBFJ1sv2z6Fe1jLQwNgi0Sdktb+yKK+tCXUguNCtkY7k7uxsH5WGfuloQlT/6avtZf4x/x2dmYQtXSCwOHc8+9d87JCiU9xfFFI7p3/8HDRwuPm0+ePnv+orW4tO9t6QR2hVXWHWbgUUmDXZKk8LBwCDpTeJCd7NT9g5/ovLTmB00K7GsYGZlLARSoQev1Kd/gqS/1oBpvxNOjVJqcJrxYHb89PRoPWu24E8+K3wXJHLTZvPYGi43NdGhFqdGQUOB9L4kL6lfgSAqF02ZaeixAnMAIewEa0Oj71czHlK8EZshz68IzxGfs3xMVaO8nOgtKDXTsb/dqci3T/2r3Sso/9ytpipLQiOtbeak4WV7nwofSoSA1CQCEk+G7XByDA0EhvRuH6t1krfLBzS4Glw6/BupbgQ7IundVCm6kpZkG16N0rUb/E8L4jzCgZjNEntwO+C7Yf99JPnU+fv/Q3tqeh7/AXrE3bJUlbJ1tsS9sj3WZYGfsF/vNzhuX0XLUjlaupVFjPvOS3aiocwUQyb/2</latexit> q = 1 X x=0 p(x)qx ←の右辺は,Xの負の二項分布の確率母関数に なっていることに注意 Def of PGF <latexit sha1_base64="oGKFVnKDzth2ADr8GO0GSBF6Lec=">AAACgHicfVBdaxNBFJ1s1db4ldZHXwaDkEiJu1I/EILFtuCLWMG0gewmzE7upkPnYzNzVxKW/Q3+Gl/t7/DfOJtGsK14YeBw7rn3zjlpLoXDMPzVCDZu3b6zuXW3ee/+g4ePWts7J84UlsOAG2nsMGUOpNAwQIEShrkFplIJp+n5Qd0//QbWCaO/4jKHRLGZFpngDD01aXWzzrxL+/RoNB+Xwyrpx65Qk3LRD6txLHSGS5p3Ft35eDFptcNeuCp6E0Rr0CbrOp5sN97HU8MLBRq5ZM6NojDHpGQWBZdQNePCQc74OZvByEPNFLikXHmq6DPPTGlmrH8a6Yr9e6JkyrmlSr1SMTxz13s1uZuqf7VHBWZvk1LovEDQ/PJWVkiKhtYZ0amwwFEuPWDcCv9dys+YZRx9klcO1bvRGOm8m0PwLi188tTnHCxDY5+XMbMzJXTlXc/i3Rr9T8gWf4QeNZs+8uh6wDfBycte9Lr36stee//DOvwt8oQ8JR0SkTdkn3wkx2RAOPlOfpCf5CIIgk7wIogupUFjPfOYXKng3W8b+MN/</latexit> f(q) = E[qX ] = 1 X x=0 p(x)qx 収束定理の応用 <latexit sha1_base64="jx1xtdvnjIysvk0hVNKdgYd9clU=">AAACXXicfVBNSxxBEO2dRKPrdzzk4KVxCZggy4zk6yJK9OAlqODqwu4iNb01a2N/jN01Icuwf8Jr8sc8+VfsWVfwI/ig4fHqVVfVS3MlPcXxTS1683Zq+t3MbH1ufmFxaXnl/am3hRPYElZZ107Bo5IGWyRJYTt3CDpVeJZe7lX1s9/ovLTmhIY59jQMjMykAApS+4pv82zj6tP5ciNuxmPwlySZkAab4Oh8pbbT7VtRaDQkFHjfSeKceiU4kkLhqN4tPOYgLmGAnUANaPS9crzwiH8MSp9n1oVniI/Vxx0laO+HOg1ODXThn9cqcTPV/yt3Csp+9Epp8oLQiPtZWaE4WV4FwPvSoSA1DASEk2FdLi7AgaAQ05NB1d9krfLhmn0MVzr8FaTDHB2QdZ/LLriBlmYUrh50Nyv2mhH+PBgDq9dD5MnzgF+S061m8q359fhLY/fnJPwZtsbW2QZL2He2yw7YEWsxwRS7Zn/Zv9ptNBXNR4v31qg26VllTxB9uAPSOraq</latexit> q = f(q) <latexit sha1_base64="lScAOhK4RqzZsUttEJcF41e/VRk=">AAACgHicfVBdaxNBFJ2sH23jV6qPfbkYhFRK3JX6gVIs6oMvYgTTBrNhuTu52Q6dj+3MrDSs+Q3+Gl/1d/hvnE0j2Fa8MHA499x755y8lML5OP7Viq5cvXZ9bX2jfePmrdt3Opt3D5ypLKchN9LYUY6OpNA09MJLGpWWUOWSDvPjN03/8AtZJ4z+5OclTRQWWswERx+orLN9Answ6KV0Gm450JAWdALJS/icadiL4SuMsjhIku2s04378bLgMkhWoMtWNcg2W6/SqeGVIu25ROfGSVz6SY3WCy5p0U4rRyXyYyxoHKBGRW5SLz0t4EFgpjAzNjztYcn+PVGjcm6u8qBU6I/cxV5D7uTqX+1x5WfPJ7XQZeVJ87Nbs0qCN9BkBFNhiXs5DwC5FeG7wI/QIvchyXOHmt3eGOmCm7cUXFp6H6gPJVn0xj6sU7SFEnoRXBfpToP+J8TTP8KA2u0QeXIx4Mvg4HE/edp/8nG3u/96Ff4622L3WY8l7BnbZ+/YgA0ZZ9/Yd/aD/YyiqBc9ipIzadRazdxj5yp68RtRqcCT</latexit> q = P(9n 1; Zn = 0|X0 = 1) <latexit sha1_base64="SPvzUfp7usuqeWoIT4jsHuNUGMQ=">AAACgXicfVBdTxNBFJ0uKFC/ij7yMqExaRHrLgE0MUQiPPhiRGOBpFub2end7YT5WGbuGprN/gd/Da/4N/w3zpaaCBhvMsnJuefeO+ckuRQOw/BXI1hYvHd/aXml+eDho8dPWqtPj50pLIc+N9LY04Q5kEJDHwVKOM0tMJVIOEnODur+yXewThj9Fac5DBXLtEgFZ+ipUWvjnO7RWEKKnXicWsbLqCqjF19GYSd6ed59lVSxFdkEu9+SUasd9sJZ0bsgmoM2mdfRaLXxLh4bXijQyCVzbhCFOQ5LZlFwCVUzLhzkjJ+xDAYeaqbADcuZqYo+98yYpsb6p5HO2L8nSqacm6rEKxXDibvdq8nNRP2rPSgwfTMshc4LBM2vb6WFpGhoHRIdCwsc5dQDxq3w36V8wnw66KO8cajejcZI590cgndp4aOnPuVgGRq7UcbMZkroyrvO4s0a/U/ILv4IPWo2feTR7YDvguOtXrTb2/m83d5/Pw9/mayRddIhEXlN9skHckT6hJMf5JJckZ/BQtANwmDrWho05jPPyI0K3v4GRyfDBQ==</latexit> q = ✓ 1 1 + R0(1 q)/b ◆b
  7. ⽔際対策 これまでの計算は⽔際対策何も無しの場合(⾃然状態) 実際は⼊国制限などの対策があるよね ⼊国者数:N そのうちの感染割合:b ⽔際対策の効果 (⼊国リスクの相対的減少) :a 51 <latexit

    sha1_base64="ihbGBmTVqGay20h70nDaLwuaK5w=">AAACYHicfVBdSxtBFJ2s2sbU1kTf7MvQIKjYsFv64UtRbB980SoYFZIgdyc3cch8LDN3pWHJz/DV/q6++ks6G1Pwo/TAwOHcc+fee9JMSU9x/LsSzc0vvHhZXay9Wnr9ZrneWDnzNncC28Iq6y5S8KikwTZJUniROQSdKjxPR9/K+vk1Oi+tOaVxhj0NQyMHUgAFqWP4V76RvIfN9Oiy3oxb8RT8OUlmpMlmOL5sVHa7fStyjYaEAu87SZxRrwBHUiic1Lq5xwzECIbYCdSARt8rpjtP+HpQ+nxgXXiG+FR92FGA9n6s0+DUQFf+aa0Ut1P9r3Inp8FOr5AmywmNuJ81yBUny8sMeF86FKTGgYBwMqzLxRU4EBSSejSo/JusVT5c8x3DlQ4Pg/QjQwdk3VbRBTfU0kzC1cPudsn+Z4Sff42B1Woh8uRpwM/J2YdW8rn16eRjc29/Fn6VvWXv2AZL2Be2xw7YMWszwSy7YbfsV+UuqkbLUePeGlVmPavsEaK1P2mBt10=</latexit> n = (1 a)bN ⽔際対策をすり抜けて市中感染に寄与してしまう⼈数 ⼤規模流⾏が起こる確率は <latexit sha1_base64="iwsas9R9Zkvsvu33cZVN14FhKtI=">AAACbHicfVDbTlNBFJ0eFLEKFtQnYjKxkQApzTlGlBcjUR94kUtigaQtzT7T3TJhLoeZfQzNST/GV/0if8JvcE6pCbewk8msrL32baWZkp7i+E8lmnnwcPbR3OPqk6fzC89qi0uH3uZOYEtYZd1xCh6VNNgiSQqPM4egU4VH6dmXMn/0A52X1nynUYZdDUMjB1IABapXe5lsnJ8Y/pGXf7GabMBaujvu1epxM54Evw2SKaizaez3FiufOn0rco2GhALv20mcUbcAR1IoHFc7uccMxBkMsR2gAY2+W0z2H/M3genzgXXhGeIT9mpFAdr7kU6DUgOd+pu5kmyk+q50O6fBVreQJssJjbicNcgVJ8tLP3hfOhSkRgGAcDKsy8UpOBAUXLs2qOxN1iofrvmK4UqH3wK1l6EDsm696IAbamnG4ephp1Gi+4Rw8V8YULUaLE9uGnwbHL5tJu+bmwfv6tufp+bPsWX2mq2yhH1g22yH7bMWE6xgP9kv9rvyN3oRLUevLqVRZVrznF2LaOUfCAu7RA==</latexit> 1 qn = 1 q(1 a)bN ←何%くらい感染者が⼊るのを防げるか? ここに⾊々モデルを⼊れることで拡張可能