Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GunosyでのKinesis Analytics利用について / BigData JAWS ...
Search
koid
April 04, 2017
Technology
1
910
GunosyでのKinesis Analytics利用について / BigData JAWS 6 Kinesis Analytics
koid
April 04, 2017
Tweet
Share
More Decks by koid
See All by koid
新しい技術の導入時に大切にしていること / IVS CTO Night 2018 LT
koid
2
7.1k
GunosyでのKinesis Analytics利用について / AWS Solution Days 2017 -AWS DB Day-
koid
0
240
re:Inventに行ってきました - 気になった新サービス / AWS re:Invent2016 Participants LT
koid
0
2k
AWS Lambda - ピーキーなアクセスに備える / Gunosy Beer Bash #8
koid
0
2.1k
AWS Lambdaで複数アカウント間でアレコレする / Gunosy Beer Bash #7
koid
1
2k
サーバにログインしない・させないサービス運用 / AWS Summit 2015 Devcon
koid
6
9.1k
GunosyのMicroServicesとOpsWorks / よくわかる AWS OpsWorks
koid
18
5.9k
Other Decks in Technology
See All in Technology
Wantedly での Datadog 活用事例
bgpat
1
500
祝!Iceberg祭開幕!re:Invent 2024データレイク関連アップデート10分総ざらい
kniino
3
300
2024年にチャレンジしたことを振り返るぞ
mitchan
0
140
Opcodeを読んでいたら何故かphp-srcを読んでいた話
murashotaro
0
260
第3回Snowflake女子会_LT登壇資料(合成データ)_Taro_CCCMK
tarotaro0129
0
190
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
37
14k
PHPからGoへのマイグレーション for DMMアフィリエイト
yabakokobayashi
1
170
コンテナセキュリティのためのLandlock入門
nullpo_head
2
320
株式会社ログラス − エンジニア向け会社説明資料 / Loglass Comapany Deck for Engineer
loglass2019
3
32k
サイボウズフロントエンドエキスパートチームについて / FrontendExpert Team
cybozuinsideout
PRO
5
38k
社内イベント管理システムを1週間でAKSからACAに移行した話し
shingo_kawahara
0
190
LINE Developersプロダクト(LIFF/LINE Login)におけるフロントエンド開発
lycorptech_jp
PRO
0
120
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Making the Leap to Tech Lead
cromwellryan
133
9k
What's in a price? How to price your products and services
michaelherold
243
12k
Side Projects
sachag
452
42k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
How STYLIGHT went responsive
nonsquared
95
5.2k
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
Facilitating Awesome Meetings
lara
50
6.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
A designer walks into a library…
pauljervisheath
204
24k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Transcript
GunosyでのKinesis Analytics利⽤について 株式会社Gunosy ⼩出 幸典
⾃⼰紹介 • 名前 – ⼩出 幸典 (こいで ゆきのり) • 所属
– 株式会社Gunosy • プロビジョニング・デプロイフローの共通化とか • 過剰リソース警察、コスト削減おじさん • 好きなAWSサービス – OpsWorks, Lambda, Kinesisファミリー, 最近ちょこっとECS
株式会社Gunosy – 「情報を世界中の⼈に最適に届ける」 • Gunosyは 情報キュレーションサービス「グノシー」と • 2016年6⽉1⽇にKDDI株式会社と共同でリリースした 無料ニュース配信アプリ「ニュースパス」を提供する •
会社です。「情報を世界中の⼈に最適に届ける」を ビジョンに活動しています。 ネット上に存在するさまざまな情報を、 独⾃のアルゴリズムで収集、評価付けを⾏い ユーザーに届けます。 情報キュレーションサービス 「グノシー」 600媒体以上のニュースソースをベースに、 新たに開発した情報解析・配信技術を⽤いて⾃動的に 選定したニュースや情報をユーザーに届けます。 無料ニュース配信アプリ 「ニュースパス」
宣伝:データ分析ブログやっています http://data.gunosy.io/
本⽇お話させていただく内容 Gunosyでどういった感じで Kinesis Analyticsを利⽤しているか
なぜストリーム処理/マイクロバッチ処理をしたいのか • 「情報を世界中の⼈に最適に届ける」 – 時間(鮮度)の制約 • 情報には「鮮度」がある – 頻度(量)の制約 •
⾒せられる情報量には限りがある • どういった⼈に、どういった情報が適しているのか – 事前に「誰にどのぐらい読まれるか」等の推定はしているが、⾄近 の実績値も評価に利⽤したい – より短い時間・より少ない試⾏で、実績値を集めたい
例えば • 記事クリックの(ニア)リアルタイム算出 – 「⼤域的な」傾向はわかる
例えば • 「⼤域的な」!= 全てのユーザ – それぞれどういった⼈に適しているのか
Gunosyでの右往左往 • 2013 mongodb+マイクロバッチで頑張っていた • 2014 Redshift+マイクロバッチで頑張っていた – fluentdのflush intervalが短すぎるとcopyが詰まる
– クエリ投げすぎても詰まる余り⾼頻度にできない • 2015 Norikraで頑張っていた – 度々⽌まるが知⾒無さすぎ→監視も復旧⾃動化もままならず – 我々には早かった • 2016 Spark Streamingで頑張っていた – ⾃由度⾼いけど開発コスト⾼し、インフラコスト⾼し – 我々にはオーバースペックだった 本⽇は割愛
本題 Kinesis Analyticsを利⽤してみた
ざっくりした構成(Source Stream) • 以前よりfluentdを利⽤してログ配送をしていた – 同じログをStreams/Firehoseに送る • fluent-plugin-kinesis • Kinesis
Analyticsはまだ東京に来ていないので、他リージョンへ Web servers (fluentd) Kinesis Firehose S3 (backup) Kinesis Analytics Elasticsearch Service summary log Mobile apps Source Stream log Tokyo Oregon Kinesis Firehose
Reference Dataの追加 • ユーザのセグメント別の集計 – どういったユーザが興味を⽰しているのか • S3にセグメント情報を配置 • ログにセグメント情報を付加し、セグメント別に集計
S3 User–Data Reference Data Web servers (fluentd) Kinesis Firehose S3 (backup) Kinesis Analytics Elasticsearch Service summary log Mobile apps Source Stream log Kinesis Firehose
SQL例 • ⼀度中間ストリームを作る – Source StreamとReference DataをJOIN
SQL例 • 中間ストリームのデータを1分おきにサマリして、出⼒へ
クエリ結果のイメージ • (再掲)
サービスへのフィードバック(出⼒) • 現在のところバッチサーバからESSへ取りに⾏っている – 突如ストリーム感が無くなったのは内緒 • ESSはIAM Roleでアクセス制御できる(VPCを考えなくて良い) • ESの集計関数が使える
Web servers (fluentd) Kinesis Firehose S3 (backup) Kinesis Analytics Elasticsearch Service summary log Mobile apps Source Stream log Tokyo Oregon Kinesis Firehose Batch Server Tokyo
苦労/⼯夫したところなど
東京リージョンのStreamsから他リージョンへの転送 • クライアントから直接ログを投げ込んでるケース – コンシューマ書きたくない • Lambdaで頑張ろうと思ったけどスループット厳しかった Kinesis Streams log
Mobile apps Tokyo Oregon Kinesis Streams ?
東京リージョンのStreamsから他リージョンへの転送 • コンシューマとしてfluentdを利⽤ – inputプラグインで東京のStreamsから取り出し • outputプラグインで他リージョンのStreams/Firehoseへ転送 • ついでにタグルーティングも Kinesis
Streams Mobile apps Tokyo Oregon Kinesis Streams fluentd server
利⽤していての所感
こうなると嬉しい • Source Stream – 1つのApplicationで複数のStreamを読み込めると嬉しい • 同じログを何度も別のStreamに書くのは冗⻑感がある fluent server
Tag: A+B Application 1 Tag: A+C Application 2 Tag: B+C Application 3 fluent server Tag: A Application 1 Tag: B Application 2 Tag: C Application 3
こうなると嬉しい • Reference Data – Console上で追加できると嬉しい – Console上で⾒えると嬉しい(サンプルだけでも良いので…)
まとめ • 開発が楽 – ほとんどConfig芸(IAMは⼤変) – クエリだけ集中して考えられる • 運⽤も楽 –
フルマネージド – 前後(Streams/Firehose)の流量は注意 • コストも安い – (ケース次第ですが)
終わりに • ご清聴ありがとうございました