Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artifi...
Search
Kenji Saito
PRO
January 25, 2024
Business
0
88
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artificial Data
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第11回で使用したスライドです。
Kenji Saito
PRO
January 25, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
発表と総括 / Presentations and Summary
ks91
PRO
0
7
市民科学にAI はどう活用できるか / How AI Can Be Used for Citizen Science
ks91
PRO
0
11
グリーンマイニングが Bitcoin プロトコルに及ぼす影響 / Impact of Green Mining on the Bitcoin Protocol
ks91
PRO
0
18
FinTech 13-14 : Ideathon, Presentations and Conclusions
ks91
PRO
0
56
デザイン相談会 / Design Consultation
ks91
PRO
0
13
FinTech 11-12 : Cyber-Physical Society and Future of Finance
ks91
PRO
0
52
メタ自然選択と製品トレーサビリティー / Meta-Natural Selection and Product Traceability
ks91
PRO
0
13
伝統的金融に呑まれる分散型金融 / Decentralised Finance Engulfed by Traditional Finance
ks91
PRO
0
16
ウェブサービスデザイン 2 / Web Service Design 2
ks91
PRO
0
26
Other Decks in Business
See All in Business
会計実務研修へのLMS導入~いつでも、どこでも、何度でも~
tokyo_metropolitan_gov_digital_hr
0
140
HERBEST_about service
beat
0
800
VANISH STANDARD Company Deck
vstandard
PRO
3
22k
新しい社員の組織適応を 支える3つの要素とプロセス / Three elements and processes of organizational adaptation
tbpgr
2
440
【metimo】「『似合う』を楽しもう。」
hinalin
0
770
新卒エンジニア向け会社紹介資料/newgraduates-engineer
nextbeat
2
1.6k
株式会社AGEST紹介資料/AGEST Recruitment
agest_recruit
0
2.3k
株式会社Beer and Tech/HitoHana(ひとはな) 採用資料 2024.11
beerandtech_recruiter
1
950
TAIAN Company Deck_202411
kushi
0
1.2k
360度カメラを活用した施設配置確認ツール
tokyo_metropolitan_gov_digital_hr
0
140
3次元データを用いた差分解析による工事発注への取組
tokyo_metropolitan_gov_digital_hr
0
480
Theoria technologies:About Us
theoriatec2024
1
2.4k
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
47
2.1k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
The Cult of Friendly URLs
andyhume
78
6k
Music & Morning Musume
bryan
46
6.2k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
450
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
BBQ
matthewcrist
85
9.3k
Transcript
generated by Stable Diffusion XL v1.0 2023 12 R (
) (2) — (WBS) 2023 12 R ( ) (2) — — 2024-01 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 12 R ( ) (2) — — 2024-01
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 12 R ( ) (2) — — 2024-01 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2023 12 R ( ) (2) — — 2024-01 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2023 12 R ( ) (2) — — 2024-01 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2023 12 R ( ) (2) — — 2024-01 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2023 12 R ( ) (2) — — 2024-01 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2023 12 R ( ) (2) — — 2024-01 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2023 12 R ( ) (2) — — 2024-01 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2023 12 R ( ) (2) — — 2024-01 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2023 12 R ( ) (2) — — 2024-01 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2023 12 R ( ) (2) — — 2024-01 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2023 12 R ( ) (2) — — 2024-01 – p.13/14
2023 12 R ( ) (2) — — 2024-01 –
p.14/14