Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artifi...
Search
Kenji Saito
PRO
January 25, 2024
Business
0
130
R を用いた分析(補講) (2) — 人工データの生成 / Generating Artificial Data
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第11回で使用したスライドです。
Kenji Saito
PRO
January 25, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
FinTech 3-4 : Internet Technology and Governance
ks91
PRO
0
19
民主主義と博愛(Humanitarianism) / Democracy and Humanitarianism
ks91
PRO
0
1
ブロックチェーン概論 / Introduction to Blockchain
ks91
PRO
0
6
ブロックチェーンと分散ファイナンス概論 / Introduction to Blockchain and Decentralized Finance
ks91
PRO
0
47
Proof of Authenticity of General IoT Information with Tamper-Evident Sensors and Blockchain
ks91
PRO
0
5
FinTech 1-2 : Overview of FinTech
ks91
PRO
0
14
デジタルトランスフォーメーションと民主主義 / Digital Transformation and Democracy
ks91
PRO
0
19
We Never Took the Kobayashi Maru Test Until Now. What Do You Think of Our Solutions? — Journeys of the Mind Through a No-Win Game
ks91
PRO
0
24
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
79
Other Decks in Business
See All in Business
アッテル会社紹介資料/culture deck
attelu
10
15k
株式会社STYZ会社概要資料
culumu
0
170
FABRIC TOKYO会社紹介資料 / We are hiring(2025年10月07日更新)
yuichirom
36
350k
小さな開発会社を作った理由(再)
polidog
PRO
0
130
Team Topologies Second Edition - launch events - 25 September 2025
matthewskelton
PRO
0
470
メルカリグループ行動規範
mercari_inc
0
220
他人が怖くて話せない私が、過去の寄り道に救われた『会話へのハードルを”割引”する方法』
aokiplayer
PRO
0
140
GVA TECH会社説明資料/GVA TECH_Pitch deck
gvatech2017
0
730
株式会社デイトラ FACT BOOK 2025
daytra
0
390
社内請負スクラムから脱却する〜複雑性に適応するスクラムチームの作り方〜
yasuhirokimesawa
1
120
Leveraging Guest Podcasting to Boost SEO & Build Your Brand
brandonleibowitz
1
170
Vorsicht, Autopilot! Bewusste Produktführung im AI-Zeitalter
arnekittler
0
120
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Building Applications with DynamoDB
mza
96
6.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Cult of Friendly URLs
andyhume
79
6.6k
Balancing Empowerment & Direction
lara
4
680
Thoughts on Productivity
jonyablonski
70
4.9k
Scaling GitHub
holman
463
140k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Faster Mobile Websites
deanohume
310
31k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Transcript
generated by Stable Diffusion XL v1.0 2023 12 R (
) (2) — (WBS) 2023 12 R ( ) (2) — — 2024-01 – p.1/14
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 12 R ( ) (2) — — 2024-01
– p.2/14
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 • 11 R ( ) (1) — • 12 R ( ) (2) — • 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 12 R ( ) (2) — — 2024-01 – p.3/14
N(µ, σ2) ρ 2 ( : ˆ y = a
+ b1 x1 + b2 x2 + e ) 2023 12 R ( ) (2) — — 2024-01 – p.4/14
N(µ, σ2) “rnorm()” set.seed(173205) # # N(50, 10^2) 100 x
<- rnorm(n=100, mean=50, sd=10) # x # hist(x) mean(x) sd(x) 2023 12 R ( ) (2) — — 2024-01 – p.5/14
Histogram of x x Frequency 10 20 30 40 50
60 70 80 0 5 10 15 20 25 30 35 mean(x) : 50.06994 sd(x) : 10.30096 2023 12 R ( ) (2) — — 2024-01 – p.6/14
ρ 2 (1/2) MASS “mvrnorm()” “ .R” # r =
0.9 # t = 3.7 # r = 15.2 # t = 7.5 # = -0.5 # <- matrix(c( r^2, * t * r, * r * t, t^2 ), nrow=2) 2023 12 R ( ) (2) — — 2024-01 – p.7/14
“mvrnorm()” = S xx S xy S xy S yy
= S xx rS x S y rS x S y S yy ( r = S xy S x S y ) 2 x, y x, y, z, . . . 2023 12 R ( ) (2) — — 2024-01 – p.8/14
ρ 2 (2/2) MASS “mvrnorm()” “ .R” # set.seed(28284) <-
mvrnorm(n=100, mu=c( r, t), Sigma= ) <- pmin(pmax( [,1], 13.0), 19.9) <- pmin(pmax( [,2], 0.0), 20.0) “ [,1]” “ [,2]” plot 2023 12 R ( ) (2) — — 2024-01 – p.9/14
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) r : -0.5932345 ( ) -0.5884094 ( ) 2023 12 R ( ) (2) — — 2024-01 – p.10/14
(1/2) “ .R” n <- 50 # a <- 49.4
# ( (158cm ) ) # r_father <- 0.306 mean_father <- 168.78 sd_father <- 3.2 # r_mother <- 0.37 mean_mother <- 155.32 sd_mother <- 2.45 2023 12 R ( ) (2) — — 2024-01 – p.11/14
(2/2) “ .R” <- round(rnorm(n=n, mean=mean_father, sd=sd_father), digits=1) <- round(rnorm(n=n,
mean=mean_mother, sd=sd_mother), digits=1) e <- rnorm(n=n, mean=0, sd=2.8) # <- round(a + r_father * + r_mother * + e, digits=1) 1 “round()” plot 2023 12 R ( ) (2) — — 2024-01 – p.12/14
ፉ㌟㛗 160 165 170 175 152 156 160 164 160
165 170 175 ∗㌟㛗 152 156 160 164 150 154 158 150 154 158 ẕ㌟㛗 : 34.2484 : 0.3545 : 0.4137 : 0.2831 2023 12 R ( ) (2) — — 2024-01 – p.13/14
2023 12 R ( ) (2) — — 2024-01 –
p.14/14