Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20240222_LangChain_ver0.1.0_LCEL
Search
Kazuki Maeda
February 22, 2024
Technology
4
420
20240222_LangChain_ver0.1.0_LCEL
https://chatgpt.connpass.com/event/307586/
での登壇資料
Kazuki Maeda
February 22, 2024
Tweet
Share
More Decks by Kazuki Maeda
See All by Kazuki Maeda
モノリスの認知負荷に立ち向かう、コードの所有者という思想と現実
kzkmaeda
0
110
エンジニアリング価値を黒字化する バリューベース戦略を用いた 技術戦略策定の道のり
kzkmaeda
9
4.6k
現場の種を事業の芽にする - エンジニア主導のイノベーションを事業戦略に装着する方法 -
kzkmaeda
2
3.6k
生成AIを用いた 新しい学びの体験を 提供するまでの道のり
kzkmaeda
0
240
生成AIによって変わる世界 -可能性とリスクについて考える-
kzkmaeda
2
250
新しいことを組織ではじめる、そしてつづける
kzkmaeda
5
900
20240824_JAWS_PANKRATION_2024
kzkmaeda
0
81
20240416_devopsdaystokyo
kzkmaeda
1
470
20240321_生成AI時代のDevOps
kzkmaeda
2
1.1k
Other Decks in Technology
See All in Technology
バックエンドエンジニアによるフロントエンドテスト拡充の具体的手法
kinosuke01
1
630
Engineering Managementのグローバルトレンド #emoasis / Engineering Management Global Trend
kyonmm
PRO
6
980
銀行でDevOpsを進める理由と実践例 / 20250317 Masaki Iwama
shift_evolve
1
100
ペアプログラミングにQAが加わった!職能を超えたモブプログラミングの事例と学び
tonionagauzzi
1
140
Compose MultiplatformにおけるiOSネイティブ実装のベストプラクティス
enomotok
1
210
セマンティックレイヤー入門
ikkimiyazaki
8
2.7k
OPENLOGI Company Profile for engineer
hr01
1
22k
チームの性質によって変わる ADR との向き合い方と、生成 AI 時代のこれから / How to deal with ADR depends on the characteristics of the team
mh4gf
4
330
ISUCONにPHPで挑み続けてできるようになっ(てき)たこと / phperkaigi2025
blue_goheimochi
0
140
職種に名前が付く、ということ/The fact that a job title has a name
bitkey
1
240
ソフトウェア開発現代史: なぜ日本のソフトウェア開発は「滝」なのか?製造業の成功体験とのギャップ #jassttokyo
takabow
2
1.5k
React Server Componentは 何を解決し何を解決しないのか / What do React Server Components solve, and what do they not solve?
kaminashi
6
1.2k
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
470
Testing 201, or: Great Expectations
jmmastey
42
7.4k
Bash Introduction
62gerente
611
210k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
BBQ
matthewcrist
88
9.5k
Practical Orchestrator
shlominoach
187
10k
The Pragmatic Product Professional
lauravandoore
33
6.5k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
A Philosophy of Restraint
colly
203
16k
Side Projects
sachag
452
42k
Transcript
LangChain浦島太郎状態から v0.1.0とLCELについていきたい ChatGPT Meetup Tokyo #6 @kzk_maeda
自己紹介 Kazuki Maeda 𝕏 @kzk_maeda SRE/DRE/EM @atama plus AWS Community
Builders AWS Startup Community Core Member
自己紹介 しばらく触ってないな・・
なんとか ついていきたい
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
Official Release Blogの概要 LangChain公式のRelease Blogには下記の項目でv0.1.0の紹介がされている • Introduction • Third Party
Integrations • Observability • Composability • Streaming • Output Parsing • Retrieval • Agents • LangChain 0.2 https://blog.langchain.dev/langchain-v0-1-0/
Introduction - Architectureの進化 • packageを分割して堅牢性と拡張性を向上 ◦ core ◦ community ◦
partner ◦ … • 個々にバージョン管理されていく • Backward compatibilityのため langchain packageは残る
Third Party Integrations - パッケージの分割 • 700+のIntegrationがあり、これがLangChainの強み • これまでは個々のlibrary依存関係がupgradeの足枷になっていたが、その影響を軽 減可能に
• community ◦ 多くの3rd party integrationのコードが記述されている • partner ◦ openaiやgoogle-vertexaiなどが個別のpackage化されており、 より安定して運用できる • langchain packageには移設先のコードへのInterfaceが残され、後方互換を 担保している
Observability - LangSmithの拡大 • LangSmithを用いた可観測性の拡大 • 先日の発表でprivate-betaから GAされた • in-VPCで立ち上がる
Enterprise editionの計画もある
Composability - LCELを標準記法に • LangChain Expression Language(LCEL)を標準記法として拡張していく • Legacy VersionのChainがあるが、LCELが十分に浸透するまでLegacyを非推奨に
することはないとのこと
Output Parsing - LLMをToolsとして扱う • LLMをtoolとして、別のツールへのinputとするユースケースにおいて 下流のアプリケーションに渡すデータの構造化が課題 • LLMの出力にデータフォーマットと型の指定を渡すことでシステム間連携 の容易性を上げる
◦ JSON、XML、Yamlなどのファイルタイプ指定が可能 • 完全に型強制をかけるというより、 promptの中で出力のデータ型を指定するという実 装だった ◦ validationをかけられるParserもあるので、使用する場合は調査が必要
Other - その他項目のwrap up • Streaming ◦ 完全な応答を待たず、応答の家庭を streaming dataとして返す
◦ LECLに対応 • Retrieval ◦ ingestion - index生成APIを公開 ◦ retrieval - 学術的なretrievalや独自のロジックを実装 ▪ retrievalの際、個人がアクセスできるdocsに認可制御をかけられる • Agents ◦ updateに関する話は少なめ • LangChain 0.2 ◦ すでに0.2の計画は立っており、今後は安定的な minor verupを予定
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
install packageのバージョン更新 • 手元のapplicationで、langchain v0.1.8への更新と、分割されたpackageの導入を実 施
packageの参照を更新 • 種類によって、core/community/partnerのどれをimportするかが異なる • text_splitterなど、langchain package自体に残っているものもある ◦ architecture上、個別のusecaseに特化した機能はlangchain layerに残る
(余談)BedrockをPartner Packageに・・ • OpenAIやVertexAIはPartner Packageに所属しているのに、Bedrockは Community Packageに所属している・・ • Discussionを起票しているので、 賛同される型はvoteお願いします!
https://github.com/langchain-ai/langchain/discussions/17912
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
(再掲)Composability - LCELを標準記法に • LangChain Expression Language(LCEL)を標準記法として拡張していく • Legacy VersionのChainがあるが、LCELが十分に浸透するまでLegacyを非推奨に
することはないとのこと
LCELの構成要素 • 基本的な prompt + model + output parser のパターン
• 各インスタンスをunix pipe operatorのように記述してデータの流れを宣言 • Runnableと呼ばれるI/Fを実装しており、共通の呼び出しメソッドを持つ
改めて、LCELとは • 複雑なchainをsimpleに記述することができる • 公式ドキュメントの例→ ◦ ※全てのusecaseを盛り込んだ場合の記述量の差
LCELはどのように実装されているか • Runnable*という基底クラスの __or__ メソッドをオーバーライドすることで Unix Pipe Operator型のI/Fを実現 • 個々のクラスはRunnable*を継承して実装されている
LCELはどう進化していく?(個人的主観) • データパイプラインの実装がより直感的に記述できるようになっていく? ◦ Apache AirflowのようにDAGの実装をより直感的にできると嬉しい
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
LangChain v0.1.0 / LECLについて • LangChain初のstable versionがリリースされました! ◦ メインはarchitectureの進化で、これからの拡張に耐えられる ソフトウェア設計に移行されている
◦ LCELはcoreに位置付けられ、今後はLCEL I/Fを中心に進化していく • LCELはこれからbasic useになっていきます! ◦ 現状でも、シンプルにchainを記述できるようになります ◦ DAGに則ったデータフローをよりシンプルに記述できるよう 進化してくれると嬉しいなぁ