Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20240222_LangChain_ver0.1.0_LCEL
Search
Kazuki Maeda
February 22, 2024
Technology
4
460
20240222_LangChain_ver0.1.0_LCEL
https://chatgpt.connpass.com/event/307586/
での登壇資料
Kazuki Maeda
February 22, 2024
Tweet
Share
More Decks by Kazuki Maeda
See All by Kazuki Maeda
日本の教育の未来 を考える テクノロジーは教育をどのように変えるのか
kzkmaeda
1
85
モノリスの認知負荷に立ち向かう、コードの所有者という思想と現実
kzkmaeda
0
200
エンジニアリング価値を黒字化する バリューベース戦略を用いた 技術戦略策定の道のり
kzkmaeda
9
5.2k
現場の種を事業の芽にする - エンジニア主導のイノベーションを事業戦略に装着する方法 -
kzkmaeda
2
4.7k
生成AIを用いた 新しい学びの体験を 提供するまでの道のり
kzkmaeda
0
270
生成AIによって変わる世界 -可能性とリスクについて考える-
kzkmaeda
2
280
新しいことを組織ではじめる、そしてつづける
kzkmaeda
5
920
20240824_JAWS_PANKRATION_2024
kzkmaeda
0
96
20240416_devopsdaystokyo
kzkmaeda
1
480
Other Decks in Technology
See All in Technology
DynamoDB のデータを QuickSight で可視化する際につまづいたこと/stumbling-blocks-when-visualising-dynamodb-with-quicksight
emiki
0
150
使えるデータ基盤を作る技術選定の秘訣 / selecting-the-right-data-technology
pei0804
5
920
AndroidアプリエンジニアもMCPを触ろう
kgmyshin
2
650
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
730
AOAI で AI アプリを開発する時にまず考えたいこと
mappie_kochi
1
650
グループ ポリシー再確認 (2)
murachiakira
0
230
時間がないなら、つくればいい 〜数十人規模のチームが自律性を発揮するために試しているいくつかのこと〜
kakehashi
PRO
23
5.2k
kernelvm-brain-net
raspython3
0
510
経済メディア編集部の実務に小さく刺さるAI / small-ai-with-editorial
nkzn
2
270
AIとSREで「今」できること
honmarkhunt
3
720
TanStack Start 技術選定の裏側 / Findy-Lunch-LT-TanStack-Start
iktakahiro
0
110
Ninno LT
kawaguti
PRO
1
110
Featured
See All Featured
For a Future-Friendly Web
brad_frost
177
9.7k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
4 Signs Your Business is Dying
shpigford
183
22k
What's in a price? How to price your products and services
michaelherold
245
12k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Rails Girls Zürich Keynote
gr2m
94
13k
Transcript
LangChain浦島太郎状態から v0.1.0とLCELについていきたい ChatGPT Meetup Tokyo #6 @kzk_maeda
自己紹介 Kazuki Maeda 𝕏 @kzk_maeda SRE/DRE/EM @atama plus AWS Community
Builders AWS Startup Community Core Member
自己紹介 しばらく触ってないな・・
なんとか ついていきたい
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
Official Release Blogの概要 LangChain公式のRelease Blogには下記の項目でv0.1.0の紹介がされている • Introduction • Third Party
Integrations • Observability • Composability • Streaming • Output Parsing • Retrieval • Agents • LangChain 0.2 https://blog.langchain.dev/langchain-v0-1-0/
Introduction - Architectureの進化 • packageを分割して堅牢性と拡張性を向上 ◦ core ◦ community ◦
partner ◦ … • 個々にバージョン管理されていく • Backward compatibilityのため langchain packageは残る
Third Party Integrations - パッケージの分割 • 700+のIntegrationがあり、これがLangChainの強み • これまでは個々のlibrary依存関係がupgradeの足枷になっていたが、その影響を軽 減可能に
• community ◦ 多くの3rd party integrationのコードが記述されている • partner ◦ openaiやgoogle-vertexaiなどが個別のpackage化されており、 より安定して運用できる • langchain packageには移設先のコードへのInterfaceが残され、後方互換を 担保している
Observability - LangSmithの拡大 • LangSmithを用いた可観測性の拡大 • 先日の発表でprivate-betaから GAされた • in-VPCで立ち上がる
Enterprise editionの計画もある
Composability - LCELを標準記法に • LangChain Expression Language(LCEL)を標準記法として拡張していく • Legacy VersionのChainがあるが、LCELが十分に浸透するまでLegacyを非推奨に
することはないとのこと
Output Parsing - LLMをToolsとして扱う • LLMをtoolとして、別のツールへのinputとするユースケースにおいて 下流のアプリケーションに渡すデータの構造化が課題 • LLMの出力にデータフォーマットと型の指定を渡すことでシステム間連携 の容易性を上げる
◦ JSON、XML、Yamlなどのファイルタイプ指定が可能 • 完全に型強制をかけるというより、 promptの中で出力のデータ型を指定するという実 装だった ◦ validationをかけられるParserもあるので、使用する場合は調査が必要
Other - その他項目のwrap up • Streaming ◦ 完全な応答を待たず、応答の家庭を streaming dataとして返す
◦ LECLに対応 • Retrieval ◦ ingestion - index生成APIを公開 ◦ retrieval - 学術的なretrievalや独自のロジックを実装 ▪ retrievalの際、個人がアクセスできるdocsに認可制御をかけられる • Agents ◦ updateに関する話は少なめ • LangChain 0.2 ◦ すでに0.2の計画は立っており、今後は安定的な minor verupを予定
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
install packageのバージョン更新 • 手元のapplicationで、langchain v0.1.8への更新と、分割されたpackageの導入を実 施
packageの参照を更新 • 種類によって、core/community/partnerのどれをimportするかが異なる • text_splitterなど、langchain package自体に残っているものもある ◦ architecture上、個別のusecaseに特化した機能はlangchain layerに残る
(余談)BedrockをPartner Packageに・・ • OpenAIやVertexAIはPartner Packageに所属しているのに、Bedrockは Community Packageに所属している・・ • Discussionを起票しているので、 賛同される型はvoteお願いします!
https://github.com/langchain-ai/langchain/discussions/17912
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
(再掲)Composability - LCELを標準記法に • LangChain Expression Language(LCEL)を標準記法として拡張していく • Legacy VersionのChainがあるが、LCELが十分に浸透するまでLegacyを非推奨に
することはないとのこと
LCELの構成要素 • 基本的な prompt + model + output parser のパターン
• 各インスタンスをunix pipe operatorのように記述してデータの流れを宣言 • Runnableと呼ばれるI/Fを実装しており、共通の呼び出しメソッドを持つ
改めて、LCELとは • 複雑なchainをsimpleに記述することができる • 公式ドキュメントの例→ ◦ ※全てのusecaseを盛り込んだ場合の記述量の差
LCELはどのように実装されているか • Runnable*という基底クラスの __or__ メソッドをオーバーライドすることで Unix Pipe Operator型のI/Fを実現 • 個々のクラスはRunnable*を継承して実装されている
LCELはどう進化していく?(個人的主観) • データパイプラインの実装がより直感的に記述できるようになっていく? ◦ Apache AirflowのようにDAGの実装をより直感的にできると嬉しい
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
LangChain v0.1.0 / LECLについて • LangChain初のstable versionがリリースされました! ◦ メインはarchitectureの進化で、これからの拡張に耐えられる ソフトウェア設計に移行されている
◦ LCELはcoreに位置付けられ、今後はLCEL I/Fを中心に進化していく • LCELはこれからbasic useになっていきます! ◦ 現状でも、シンプルにchainを記述できるようになります ◦ DAGに則ったデータフローをよりシンプルに記述できるよう 進化してくれると嬉しいなぁ