Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
Search
MIKIO KUBO
April 30, 2024
Research
2
780
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
MIKIO KUBO
April 30, 2024
Tweet
Share
More Decks by MIKIO KUBO
See All by MIKIO KUBO
Mathematical Optimization +Artificial Intelligence =MOAI
mickey_kubo
1
390
Visualization
mickey_kubo
2
470
機械学習と最適化の融合動的ロットサイズ決定問題を例として
mickey_kubo
3
520
サプライチェーン基本分析システム SCBAS
mickey_kubo
3
150
SCM Solutions - Metrics, Trade-offs and Beyond -
mickey_kubo
1
180
理論と実務を繋ぐには V
mickey_kubo
2
1.2k
数理最適化と機械学習の融合アプローチ-分類と新しい枠組みと応用-
mickey_kubo
5
1.5k
Other Decks in Research
See All in Research
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
250
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
190
Weekly AI Agents News! 12月号 論文のアーカイブ
masatoto
0
150
The Fellowship of Trust in AI
tomzimmermann
0
230
PostgreSQLにおける分散トレーシングの現在 - 第50回PostgreSQLアンカンファレンス
seinoyu
0
210
書き手はどこを訪れたか? - 言語モデルで訪問行動を読み取る -
hiroki13
0
110
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
3.6k
Bluesky Game Dev
trezy
0
120
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
1.1k
IM2024
mamoruk
0
210
eAI (Engineerable AI) プロジェクトの全体像 / Overview of eAI Project
ishikawafyu
0
220
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
23
5.6k
Featured
See All Featured
Bash Introduction
62gerente
610
210k
Speed Design
sergeychernyshev
25
760
Gamification - CAS2011
davidbonilla
80
5.1k
How STYLIGHT went responsive
nonsquared
96
5.3k
GitHub's CSS Performance
jonrohan
1030
460k
Code Review Best Practice
trishagee
65
17k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Building Your Own Lightsaber
phodgson
104
6.2k
Unsuck your backbone
ammeep
669
57k
How to train your dragon (web standard)
notwaldorf
89
5.8k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.4k
Transcript
機械学習と最適化の融合 ⽂脈付き確率的最適化 と最短路を例として Mikio Kubo
確率的最短路問題 あなたは家(始点s)から⼤学(終点t)まで⾞で通勤している.⾼ 速を使う道 (s,1), (2,t)を使うと最短2時間で着くが,混雑するときに は6時間かかる.授業開始までTmax (=5) 時間の余裕があるが,でき るだけ早く着きたい.どのような経路を選択すれば良いだろうか? 移動時間
s t 1 2 1 3.5 1.5 確率 ½ で 3 確率 ½ で 1 確率 ½ で 3 確率 ½ で 1
期待値による最適化 パス s => 1 => t が最適 (期待値は4) s
t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 枝 の移動時間が独⽴と仮定 3+3 = 6 確率 ¼ 3+1 or 1+3 =4 確率 ½ 1+1 = 2 確率 ¼ 確率 ¼ で実⾏不能 (Tmax=5)
確率的最適化の解 パス s => 2 => t が最適 (期待値は 3.5
+ 1.5 = 5) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 Tmax=5のときの唯⼀の実⾏可能解
その他の解 パス s => 1=> 2 => t が最適 (期待値は
(5.5 + 3.5)/2 = 4.5) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 Tmax=5.5のときの最適解 枝 の移動時間が独⽴と仮定 3+1+1.5 = 5.5 確率 ½ 1+1+1.5 = 3.5 確率 ½ 確率 ½ で実⾏不能 (Tmax=5)
リコース解 事前にパスを決めておく即時決定 (here & now) でなく,途中の情報でパス を変えて良い待機決定(wait & see; リコース)
点1まで移動し,s=>1 の移動時間が1なら 1=> t,移動時間が3なら 1=>2=>t を選ぶ(期待値は (5.5 + 2)/2 = 3.75) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 枝の移動時間が同⼀と仮定 1+1 = 2 確率 ½ 3+1+1.5 = 5.5 確率 ½ Tmax=5.5のときの最適⽅策
⽂脈付き予測・最適化 過去の天気(context; ⽂脈)と移動時間のデータをもっている.天気予 報は当たっているとしたとき移動時間を予測し,それをもとに経路を選 択したい.(単に予測してから最適化は「期待値を最⼩化」と同じ.) s t 1 2 1
3.5 1.5 過去のデータ ☀ 1,1,1,3,1,1,… ☂ 3,3,1,3,3,1,… 過去のデータ ☀ 1,1,3,1,1,1,… ☂ 1,3,1,3,3,3,… ⽂脈 F = ☀ ☂ ̂ 𝑐 = 𝐸 𝑐 𝐹 ] F の条件下での移動費⽤ c の予測値 ☂ ̂ 𝑐 = 2.5 ☀ ̂ 𝑐 = 1.5
⽂脈付き予測・最適化 (1) 費⽤の実現値をもとに最適化した場合との差をロス関数として機械学習 (Smart Prediction-then-Optimize) 最適解オラクル 実現値 c が既知のときの最適値 𝑧∗
𝑐 = min "∈$ 𝑐%𝑥 ☀で実現値が移動時間 3 の場合 𝐿𝑂𝑆𝑆 ̂ 𝑐, 𝑐 = 𝑐!𝑥∗ - 𝑐 − 𝑧∗ 𝑐 = 3 + 3 − 3.5 + 1.5 = 1 SPOロス(⾮凸) 𝑥∗ s t 1 2 1 3.5 1.5 ☀ ̂ 𝑐 = 1.5 ☀ ̂ 𝑐 = 1.5 𝑥∗ ( 𝑐 s t 1 2 1 3.5 1.5 ☀ c = 3 ☀ c = 3 𝑥∗(𝑐)
⽂脈付き予測・最適化 (2) 𝐿𝑂𝑆𝑆# ̂ 𝑐, 𝑐 = max { $∈&
𝑐!𝑥 − 2 ̂ 𝑐!𝑥 } + 2 ̂ 𝑐!𝑥∗ 𝑐 − 𝑧∗ 𝑐 SPO+ロス(凸) SPOロスの上界 線形最適化 データ 解 機械学習 SPO+ロス F 𝐿𝑂𝑆𝑆! ̂ 𝑐, 𝑐 s t 1 2 1 3.5 1.5 ☀ ̂ 𝑐 = 1.5 ☀ ̂ 𝑐 = 1.5 𝑥∗ ( 𝑐 s t 1 2 1 3.5 1.5 ☀ c = 3 ☀ c = 3 𝑥∗(𝑐) = 0 + 2×5 − 5 = 5 (≥ 1)
⽂脈付き予測・ 確率的最適化 ⽂脈から予測し,シナリオ⽣成して確率的最適化 (Estimation-then-Optimize) 様々な確率的最適化の⼿法が使える(CVaR,確率制約,ロバスト) s t 1 2 1
3.5 1.5 ☀ s t 1 2 1 3.5 1.5 ☂